ON ORDERED DOMAINS OF INTEGRITY

R. E. JOHNSON

In a recent paper, T. Szele proved that a division ring D is orderable if and only if the additive and multiplicative semigroup S generated by the nonzero squares of elements of D does not contain the zero element of D. The present paper extends this result to a domain of integrity K.

Let us denote by K^* the set of nonzero elements of K. The domain of integrity K is said to be orderable if and only if there exists an additive and multiplicative semigroup P (the positive elements) contained in K^* such that $K^* = P \cup (-P)$.

If K does not have a unit element, then there exists a unique minimal domain of integrity \overline{K} having a unit element and containing K. It is not too difficult to show that K is orderable if and only if \overline{K} is orderable. For this reason, we assume henceforth that K has a unit element.

An element a of K^* is called even if there exist elements a_1, \ldots, a_n in K^* such that a is a product of the $2n$ elements $a_1, \ldots, a_n, a_1, \ldots, a_n$ in some order. We denote by \mathcal{S} the additive semigroup generated by the even elements of K^*. The theorem we wish to prove is as follows.

Theorem. The domain of integrity K is orderable if and only if $\mathcal{S} \subseteq K^*$.

The proof of this theorem will come after a few preliminary remarks. For any subset A of K, an element b of K is called even over A if there exist elements a_1, \ldots, a_n of A and k_1, \ldots, k_m of K^* such that b is a product of the $2m+n$ elements $a_1, \ldots, a_n, k_1, \ldots, k_m, k_1, \ldots, k_m$ in some order. We denote by \mathcal{E} the set of all elements of K even over A. Evidently \mathcal{E} is a multiplicative semigroup containing A, and $\mathcal{E} = \mathcal{E}$. Furthermore, if B is the additive semigroup generated by \mathcal{E}, then $B = B$. Let \mathcal{G} denote the set of all subsets A of K such that (i) A is an additive semigroup, and (ii) $\mathcal{E} = A$. Finally,

Presented to the Society, April 25, 1952; received by the editors October 23, 1951.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for any subset A of K, denote by A^I the set of all elements b of K for which there exists an element a in A such that ba is in A.

Lemma 1. If A is in E, then A^I is in E also.

Proof. If $b \in A^{18}$, then b is a product of elements

$$a_1, \ldots, a_n, k_1, \ldots, k_m, k_1, \ldots, k_m, \quad a_i \in A^I, \quad k_i \in K^*,$$

in some order. Since each $a_i \in A^I$, there exist $c_i \in A$ such that $a_i c_i \in A$. Let $a = (a_1 c_1) \cdots (a_n c_n)$, an element of A. If some $a_i = 0$, then $b = 0$ and $b \in A^I$ immediately. Otherwise, if all $a_i \neq 0$, $ba \in A$ since ba is a product of the elements

$$c_1, \ldots, c_n, a_1, \ldots, a_n, a_1, \ldots, a_n, k_1, \ldots, k_m, k_1, \ldots, k_m,$$

$c_i \in A, a_i, k_i \in K^*$, in some order. Thus $b \in A^I$ and $A^{18} = A^I$.

To prove that A^I is an additive semigroup, let $ai \in A^I$ with $a_i \neq 0$. Then there exist $c_i \in A$ such that $a_i c_i \in A$. Since

$$(a_1 + a_2) c_1 c_2 c_3 = (a_1 c_1) (a_2 c_2) + a_2 c_1 c_2 c_3,$$

and $c_1 (a_2 c_2)$, $(a_1 c_1) (a_2 c_2)$, and $a_2 c_1 c_2$ all are in A, we conclude that $a_1 + a_2 \in A^I$. Thus $A^I \subseteq E$, and the lemma is proved.

Lemma 2. If $A \in E$, $A \subseteq K^*$, and $A^I = A$, and if, for $d \in K^*$, neither d nor $-d$ is in A, then the element B of E generated by $A \cup \{d\}$ also is contained in K^*.

Proof. If $C = [A \cup \{d\}]^g$, then B is the additive semigroup generated by C. If $c \in C$, then either $c \in A$ or c is a product of elements

$$d, a_1, \ldots, a_n, k_1, \ldots, k_m, k_1, \ldots, k_m, \quad a_i \in A, \quad k_i \in K^*,$$

in some order. In this latter case, $dc \in A$. Thus $C = A \cup F$, where $dF \subseteq A$; and $B = A \cup F' \cup (A + F')$, where F' is the additive semigroup generated by F. Since $dF \subseteq A$, evidently $F' \subseteq K^*$. To prove that $B \subseteq K^*$, let us assume $0 \in B$. Then $0 = a + f$ for some $a \in A$ and $f \in F'$. Since $(-d)(-f) \in A$, also $(-d)a \in A$. However $A^I = A$, and therefore $-d \in A$. This contradiction proves that $B \subseteq K^*$, and the lemma follows.

Proof of theorem. If K is orderable, so that $K^* = P \cup (-P)$ for some additive and multiplicative semigroup P, then it is easy to see that $S \subseteq P \subseteq K^*$.

On the other hand, if $S \subsetneq K^*$, let \mathcal{A} be the subset of E containing all A such that $S \subseteq A \subseteq K^*$. By Zorn’s lemma, \mathcal{A} has a maximal element P. In view of Lemma 1, we must have $P^I = P$. That $K^* = P \cup (-P)$ is now an immediate consequence of Lemma 2.
In case K is a division ring, the set S coincides with the set generated by the perfect squares as used by Szele. This follows easily from the identity $xyz = (xy)^2(y^{-1})^2y$, $x, y \in K^*$.

If the domain of integrity K is ordered, say $K^* = P \cup (-P)$, then for an extension L of K the ordering of K can be extended to an ordering of L if and only if $T \subset L^*$, where T is the additive semigroup in L generated by P^*. The proof of this result is much the same as that of the above theorem. This generalizes Theorem 2 of Szele's paper to a domain of integrity.

SMITH COLLEGE

THE ZEROS OF AN ANALYTIC FUNCTION
OF ARBITRARILY RAPID GROWTH

ANNETTE SINCLAIR

1. Introduction. It was shown by Poincaré [4], Borel [1], and others that an integral function may be made "to grow" arbitrarily rapidly along the real axis or along other curves extending to infinity. Ketchum [2] has considered the corresponding problem for more general point sets. He investigated sets such that, for any given function $G(z) \geq 0$, there exists a function $f(z)$ which is analytic except where $G(z)$ is unbounded and which satisfies the inequality

$$|f(z)| \leq G(z)$$

for every point z of the set.

In the publication of his results Ketchum [2] proposed a corresponding problem in which the additional restriction is placed on the function $f(z)$ that it be nonvanishing except at certain specified points of the complement of the set. In particular, suppose S_1, S_2, \cdots is an infinite sequence of simply-connected regions whose closures are nonintersecting and whose only "sequential limit point" is the point at infinity. Then, if $\{M_i\}$ is any preassigned sequence of positive constants, does there exist a nonvanishing integral function $f(z)$ such that $|f(z)| \geq M_i$ when $z \in S_i$?

Presented to the Society, April 26, 1952; received by the editors October 15, 1951.

1 The author is greatly indebted to Professor P. W. Ketchum, who suggested this topic and gave valuable suggestions in its preparation.

2 Numbers in brackets refer to the bibliography at the end of the paper.