NOTE ON OVERCONVERGENCE IN SEQUENCES OF
ANALYTIC FUNCTIONS

J. L. WALSH AND E. N. NILSON

In a recent paper [1] the authors have set forth measures of the
degree of convergence of families of analytic functions of best
approximation (or of minimum norm) in the sense of least \(p \)th powers.
It is possible to study overconvergence of certain sequences of these
functions by employing the concept of exact harmonic majorant de-
veloped by Walsh [2]. It is the purpose of the present note to indi-
cate this relationship and some of its consequences.

Let \(R \) be a finite region bounded by a finite sum \(C_1 \) of mutually dis-
joint Jordan curves. Let \(S \) be a closed set interior to \(R \), bounded by a
finite sum \(C_0 \) of mutually disjoint Jordan curves, but such \(C_0 \) sepa-
rating no point of \(R - S \) from \(C_1 \). Let \(\phi(z) \) be the function harmonic
in \(R - S \), continuous in the closure of \(R - S \), equal to zero and unity
on \(C_0 \) and \(C_1 \), respectively. Let \(C_\sigma, 0 < \sigma < 1 \), denote the locus \(\phi(z) = \sigma \),
while \(R_\sigma \) is the region consisting of \(S \) plus the points of \(R - S \) where
\(\phi(z) < \sigma \). Suppose that \(f(z) \) is analytic throughout \(R, 0 < p < 1 \), but
coincides on \(S \) with no function analytic throughout \(R_\rho \), for any \(\rho' > \rho \).

In the class of functions \(F_M(z) \) analytic throughout \(R \) and such that
the integral mean

\[
\mu_\tau(F_M, C_1) = \left\{ \frac{1}{\tau} \int_{C_1} |F_M(z)|^\tau d\psi \right\}^{1/\tau} \leq M
\]

\((\psi(z) \) conjugate to \(\phi(z) \) in \(R - S \), \(\tau = \int_{C_1} d\psi = -\int_{C_0} d\psi \)), the function
\(F_M(z) \) is defined as the (or a) function of best approximation to \(f(z) \) on
\(S \) if \(\mu_\rho(f - F_M, C_0) \) is least. For certain sequences of values of \(M \), in-
cluding sequences \{ \(M_\alpha \) \} for which \(\log M_\alpha/n \to a, 0 < a < \infty \), it was
shown [1] that

\[
\limsup_{n \to \infty} \mu_t(f - F_{M_\alpha}, C_\sigma)^{1/n} = e^{(\sigma - \rho)/(1-\rho)},
\]

provided \(0 \leq \sigma < \rho \), for all \(t, 0 < t \leq \infty \); moreover, for \(0 < t \leq \infty \) when
\(\rho \leq \sigma < 1 \) and for \(0 < t \leq q \) when \(\sigma = 1 \),

\[
\limsup_{n \to \infty} \mu_t(F_{M_\alpha}, C_\sigma)^{1/n} = e^{(\sigma - \rho)/(1-\rho)}.
\]

For \(t = \infty \), equations (1) and (2) become \((f_n(z) \equiv F_{M_\alpha}(z)) \)

\[
\limsup_{n \to \infty} \left[\max_{z \in C_\sigma} |f(z) - f_n(z)| \right]^{1/n} = e^{(\sigma - \rho)/(1-\rho)},
\]

Received by the editors October 24, 1951.

442
0 \leq \sigma < \rho$, while

\[
\limsup_{n \to \infty} \left[\max_{z \in C_{\sigma}} |f_n(z)|, \ z \in C_{\sigma} \right]^{1/n} = e^{\sigma (\sigma - \rho) / (1 - \rho)},
\]

\[
\rho \leq \sigma < 1. \text{ Consequently,}
\]

\[
\limsup_{n \to \infty} \left[\max_{z \in C_{\sigma}} |f_{n+1}(z) - f_n(z)|, \ z \in C_{\sigma} \right]^{1/n} = e^{\sigma (\sigma - \rho) / (1 - \rho)},
\]

0 \leq \sigma < 1. (That the left-hand member of (5) is not greater than the right-hand member is immediate from (3) and (4). But unless the equality holds, the sequence \{f_n(z)\} converges uniformly throughout some \(\bar{R}_n \), \(\rho' > \rho \), to a function coinciding on \(S \) with \(f(z) \). This is contrary to the assumption on \(f(z) \).

Equation (5) constitutes a necessary and sufficient condition [2, Corollary 2 of Theorem 4] that the function \(V(z) = a(\phi(z) - \rho) / (1 - \rho) \) be an exact harmonic majorant of the sequence \[f_{n+1}(z) - f_n(z)]^{1/n} in each \(R_\sigma \), \(0 \leq \sigma < 1 \), and hence in \(R \). Thus the conditions of [2, Theorems 5 and 6] are satisfied. We can conclude, therefore, that if for some sequence \{n_k\} and some \(\sigma \) the left-hand member of (3) or (4) is less than the right-hand member, then \[f_{n_k}(z)\} converges throughout some neighborhood of each point of \(C_{\sigma} \) where \(f(z) \) is analytic, and conversely. This result is, of course, much broader than our previous result [1, Theorem 4]. Further, if \{f_{n_k}(z)\} exhibits overconvergence on two disjoint arcs of \(C_{\sigma} \) having a common end point \(\alpha \), then \(z = \alpha \) cannot be an isolated singularity of \(f(z) \).

This reasoning and these conclusions remain valid if \{f_n(z)\} is no longer a sequence of functions of best approximation, but any sequence of functions, each analytic throughout \(R \) with integral mean \(\mu_\sigma(f_n, C_\sigma) \) not greater than \(M_\sigma \) (log \(M_\sigma / n \to \alpha \)) and (1) and (2) valid with \(t = q \) for \(\sigma = 0 \) and \(\sigma = 1 \), respectively. Analogous remarks can be made for the functions of minimum norm: among the functions \(G_m(z) \) analytic in \(R \) with \(\mu_\sigma(f - G_m, C_\sigma) \leq m \), the function \(G_m(z) \) is the (or a) function for which \(\mu_\sigma(G_m, C_\sigma) \) is least. There are many other consequences [2] involving rapidly convergent sequences, zeros of approximating functions, etc., which follow immediately.

References

Harvard University and Trinity College

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use