RIEMANN'S METHOD AND THE PROBLEM OF CAUCHY.
II. THE WAVE EQUATION IN n DIMENSIONS

J. B. DIAZ AND M. H. MARTIN

1. Introduction. In a recent paper Riemann’s method for the solution of the problem of Cauchy for a linear hyperbolic partial differential equation \(L(u) = 0 \) of second order for one unknown function \(u \) of two independent variables \(x, y \) was modified by the introduction of a line integral \(I_1 = \int \{ Bdx - A dy \} \) vanishing on closed paths. Here \(A \) and \(B \) are bilinear forms in the partial derivatives \(u_x, u_y, v_x, v_y \); and \(v \), the resolvent, is a properly chosen solution (analogous to Riemann’s function) of an associate equation \(M(v) = 0 \), the counterpart to the adjoint equation.

This modification opened the way to an extension of Riemann’s method to the wave equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial t^2} = 0,
\]

in two dimensions. The line integral \(I_1 \) was replaced by an integral \(I_2 \) vanishing on closed surfaces and the associate equation \(M(v) = 0 \) turned out to be the Euler-Poisson equation

\[
\frac{1}{2} M(v) = v_{\alpha \beta} + \frac{1}{\alpha - \beta} \left(v_\alpha - v_\beta \right) = 0,
\]

with the resolvent

\[
v = \alpha + \beta + 2\left((i - \alpha)(i - \beta) \right)^{1/2}
\]

taking over the role of Riemann’s function.

In the present paper the authors extend this method to the wave equation

\[
\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} - \frac{\partial^2 u}{\partial t^2} = 0,
\]

in \(n \) dimensions, \(n \geq 2 \), with, as might be expected, an \(n \)-dimensional integral \(I_n \), which vanishes over closed \(n \)-dimensional surfaces bounding \((n+1) \)-dimensional volumes, replacing \(I_1 \) and \(I_2 \). The associate...
equation is now
\[M(v) = v_{n\beta} + \frac{(n-1)/2}{\alpha - \beta} (v_{\alpha} - v_{\beta}) = 0, \]
and the resolvent is
\[v = (i - \alpha)^{(n-1)/2} (i - \beta)^{(n-1)/2}. \]

2. The Laplacian \(\Delta_{n} \) in polar coordinates. Consider the generalization to \(n \) dimensions of the well known space polar coordinate system \(\phi, \theta, r \), in three dimensions, where
\[
\begin{align*}
 x &= r \cos \phi \sin \theta, \\
 y &= r \sin \phi \sin \theta, \\
 z &= r \cos \theta,
\end{align*}
\]
and if we write
\[
\begin{align*}
 y_1 &= \phi, \\
 y_2 &= \theta_1, \\
 &\vdots \\
 y_{n-1} &= \theta_{n-2}, \\
 y_n &= r,
\end{align*}
\]
and if we write
\[
\begin{align*}
 g_{11} &= r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}, \\
 g_{22} &= r^2 \sin^2 \theta_2 \cdots \sin^2 \theta_{n-2}, \\
 &\vdots \\
 g_{n,n-1} &= r^2, \\
 g_{nn} &= 1.
\end{align*}
\]
we shall have
\[
\Delta_{n} u = \frac{1}{g^{1/2}} \sum_{i=1}^{n} \frac{\partial}{\partial y_i} \left(\frac{g^{1/2}}{g_{ii}} u_{yi} \right),
\]
and if we set
\[
 s_{i-1} = g^{1/2} / r^{n-2} g_{ii}, \quad i = 1, \ldots, n-1,
\]
so that
\[f_0 = \csc \theta_1 \sin \theta_2 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]
\[f_1 = \sin \theta_1 \sin \theta_2 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]
\[f_2 = \sin \theta_1 \sin^2 \theta_2 \sin \theta_3 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]
\[f_3 = \sin \theta_1 \sin^2 \theta_2 \sin^3 \theta_3 \sin \theta_4 \sin^2 \theta_6 \cdots \sin^{n-4} \theta_{n-2}; \]
\[\ldots \]
\[f_{n-3} = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-3} \theta_{n-3} \sin^{n-4} \theta_{n-2}; \]
\[f_{n-2} = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2}; \]

we find

\[\Delta_3 u = f^{-1} \left[\frac{\partial}{\partial \phi} \left(\frac{f_0}{r^2} u_{\phi} \right) \right] + \sum_{i=1}^{n-2} \frac{\partial}{\partial \theta_i} \left(\frac{f_i}{r^2} u_{\theta_i} \right)] + u_{rr} + \frac{n-1}{r} u_r, \]

provided we write

\[f = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} = f_{n-2}. \]

We note in passing that the element of \((n-1)\)-dimensional area on the unit sphere \(r = 1\) is

\[d\omega_n = f d\phi d\theta_1 \cdots d\theta_{n-2}, \]

and the \((n-1)\)-dimensional area of the unit sphere is

\[\omega_n = \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{0}^{2\pi} f d\phi d\theta_1 \cdots d\theta_{n-2} = \frac{2\pi^{n/2}}{\Gamma(n/2)}. \]

3. A fundamental identity. Starting with the polar coordinates \(\phi, \theta_1, \cdots, \theta_{n-2}, r\) in \(n\)-dimensional space we introduce coordinates \(\alpha, \beta, \phi, \theta_1, \cdots, \theta_{n-2}\) in \((n+1)\)-dimensional space-time by setting

\[\alpha = t + r, \quad \beta = t - r, \]

and term \(\alpha, \beta\) characteristic coordinates, inasmuch as \(\alpha=\text{const.}, \beta=\text{const.}\) are characteristic half-cones for the wave equation

\[L(u) = \frac{1}{4} (u_{tt} - \Delta_2 u) = 0. \]

In these coordinates the operator \(L(u)\) takes the form

\[L(u) = \left[u_{\alpha \beta} - \frac{(n-1)/2}{\alpha - \beta} (u_\alpha - u_\beta) \right] f \]

\[- (\alpha - \beta)^{-2} \left[\frac{\partial}{\partial \phi} (f_{0} u_{\phi}) + \sum_{i=1}^{n-2} \frac{\partial}{\partial \theta_i} (f_i u_{\theta_i}) \right], \]
with which we associate the operator

\[M(v) = v_{\alpha \beta} + \frac{(n-1)/2}{\alpha - \beta} (v_{\alpha} - v_{\beta}). \]

If we write

\[A = \int u_{\alpha} v_{\beta}, \quad B = -\int u_{\alpha} v_{\alpha}, \]

\[\Phi = \int_0^1 \frac{v_{\alpha} - v_{\beta}}{(\alpha - \beta)^2} \dot{u}_{\Phi}, \quad \Theta_j = \int_0^1 \frac{v_{\alpha} - v_{\beta}}{(\alpha - \beta)^2} \dot{u}_{\Theta_j}, \]

\(j=1, \ldots, n-2, \) a simple calculation shows that (note that \(v = v(\alpha, \beta) \))

\[(5) \quad A_{\alpha} + B_{\beta} + \Phi_{\alpha} + \sum_{j=1}^{n-2} \frac{\partial \Theta_j}{\partial \theta_j} = (v_{\beta} - v_{\alpha})L(u) + (u_{\beta} - u_{\alpha})fM(v). \]

This identity plays the role of a Green's identity⁴ in our investigation, the part of the adjoint equation being taken over by the associate equation \(M(v) = 0. \)

According to the generalized Green's theorem, the surface integral

\[I_n = \int_{S_n} \{ A d\beta d\dot{\phi} d\theta_1 \cdots d\theta_{n-2} + B d\alpha d\dot{\phi} d\theta_1 \cdots d\theta_{n-2} \]

\[+ \Phi d\alpha d\beta d\theta_1 \cdots d\theta_{n-2} + \cdots + \Theta_{n-2} d\alpha d\beta d\phi \cdots d\theta_{n-2} \} \]

\[= \int_{S_n} \{ A v_{\alpha} + B v_{\beta} + \Phi v_{\alpha} + \cdots + \Theta_{n-2} v_{\alpha} \} dS_n \]

(where \(v_{\alpha}, v_{\beta}, \cdots \) are the components of the unit outer normal to \(S_n \)) when extended around a closed \(n \)-dimensional surface \(S_n \) bounding an \((n+1) \)-dimensional volume \(V_{n+1} \) can be expressed as a volume integral over \(V_{n+1} \), namely

\[\int_{V_{n+1}} \left(A_{\alpha} + B_{\beta} + \Phi_{\alpha} + \sum_{j=1}^{n-2} \frac{\partial \Theta_j}{\partial \theta_j} \right) d\alpha d\beta d\phi d\theta_1 \cdots d\theta_{n-2}. \]

The following lemma is now obvious.

Lemma. The surface integral \(I_n \), taken around a closed \(n \)-dimensional surface \(S_n \), vanishes whenever \(u, v \) are regular solutions of \(L(u) = 0 \), and its associate equation \(M(v) = 0 \), respectively.

It is worth while to note that each of A, B, Φ, Θ_1, \ldots, Θ_{n-2} is a bilinear form in the partial derivatives of first order of u and v with respect to α, β, ϕ, θ_1, \ldots, θ_{n-2}.

4. The problem of Cauchy. As Cauchy data on the hyperplane $t=0$ in $(n+1)$-dimensional space-time we take

\begin{align*}
u(x_1, \ldots, x_n, 0) &= u^0(x_1, \ldots, x_n), \\
\nu_t(x_1, \ldots, x_n, 0) &= u^1(x_1, \ldots, x_n),
\end{align*}

the functions u^0, u^1 being given in advance. Let P_i denote the point with coordinates (x_1, \ldots, x_n, t) in space-time. The solution of the problem of Cauchy requires the value $u(P_i)$ of the solution u of $L(u) = 0$ to be expressed in terms of the initial data u^0, u^1 carried by the part of the initial hyperplane $t=0$ contained within the ("retrograde") characteristic half-cone with vertex at P_i, i.e., in terms of the initial data assigned to the points

\[(x_1 - \bar{x}_1)^2 + \cdots + (x_n - \bar{x}_n)^2 \leq \bar{t}, \quad t = 0.\]

We assume $t > 0$ and consider the $(n+1)$-dimensional conical volume C bounded in space-time by the characteristic hypercone with vertex at P_i and the initial hyperplane $t=0$. The axis of C is the straight line P_0P_i in space-time traced out by P_i as t ranges from 0 to \bar{t}. If at each point P_i we introduce polar coordinates ϕ, θ_1, \ldots, θ_{n-2}, r with pole at P_i, the conical volume C is described by the inequalities

\[C: \quad 0 \leq \phi < 2\pi, \quad 0 \leq \theta_j \leq \pi, \quad 0 \leq r \leq \bar{t} - t, \quad 0 \leq t \leq \bar{t} \quad (j = 1, \ldots, n - 2).\]

When we take α, β, ϕ, θ_1, \ldots, θ_{n-2} as rectangular coordinates in a second $(n+1)$-dimensional space, C appears as a "wedge"

\[W: \quad 0 \leq \alpha \leq \bar{t}, \quad -\alpha \leq \beta \leq + \alpha, \quad 0 \leq \phi < 2\pi, \quad 0 \leq \theta_j \leq \pi \quad (j = 1, \ldots, n - 2).\]

That part of the boundary of C formed by the mantle of the characteristic hypercone becomes the face $\alpha = \bar{t}$ of W; the base $t=0$ of C is represented by the face $\beta = -\alpha$ of W; and the axis P_0P_i of C by the face $\beta = \alpha$ of W. The vertex P_i of C appears as the edge $\alpha = \beta = \bar{t}$ of W; the periphery of the base of C (the intersection of the initial plane with the characteristic hypercone) is replaced by the edge $\alpha = -\beta = t$ of W; and center P_0 of the base of C by the edge $\alpha = \beta = 0$ of W.

To reformulate the problem of Cauchy in $(\alpha, \beta, \phi, \theta_1$, \ldots, $\theta_{n-2})$-coordinates, one may use the transformation of variables $\alpha = \alpha_1 + \beta_1$, $\beta = \alpha_1 - \beta_1$, $\phi = \phi_1$, $\theta_j = \theta_j_1$ in the conical volume C.
space we observe that the carrier \(t=0 \) becomes the hyperplane \(\beta = -\alpha \) upon which, from (3), we assign

\[u_\phi = u_\phi, \quad u_\phi = u_\phi, \quad u_\alpha = (u_\tau + u_\alpha)/2, \quad u_\beta = -\frac{u_\tau - u_\alpha}{2} \]

as initial data. One would accordingly seek an expression for the value of the solution \(u \) of \(L(u) = 0 \), for \(L(u) \) as defined in (4), along the edge \(\alpha = \beta = \tau \) of \(W \) in terms of the above initial data carried by the face \(\beta = -\alpha \) of \(W \).

To solve the problem of Cauchy as originally formulated we apply the lemma of the preceding section to the closed surface \(S_n \) which is the boundary of the wedge \(W \) and obtain

\[
\int_{\beta = \alpha}^{\beta = -\alpha} I_n + I_n + I_n + \left(I_n + I_n \right) + \sum_{\phi = 0}^{2\pi} \left(I_n + I_n \right) = 0.
\]

For single-valued solutions, \(u \) must be periodic of period \(2\pi \) in \(\phi \) and it follows from the definition of \(\Theta \) that

\[
I_n + I_n = 0,
\]

since the external normals to \(S_n \) have opposite directions on the faces \(\phi = 0, \phi = 2\pi \). Since \(\Theta_j \) involves \(f_j \), and \(f_j \) contains \(\sin \theta_j \) as a factor for \(j = 1, \cdots, n-2 \), it is clear that

\[
I_n = I_n = 0,
\]

and the above result simplifies to

\[
I_n + I_n + I_n = 0.
\]

The integration of \(I_n \) in (6) over \(S_n \) yields

\[
\int_0^I \int_{\omega_n} \left[-A + B \right]_{\beta = \alpha} f^{-1} d\omega_n d\alpha - \int_0^I \int_{\omega_n} \left[A + B \right]_{\beta = -\alpha} f^{-1} d\omega_n d\alpha
\]

\[
+ \int_0^I \int_{\omega_n} A_{\alpha = -1} f^{-1} d\omega_n d\beta = 0,
\]

and when we employ the definitions of \(A \) and \(B \), we find

\[
- \int_0^I \int_{\omega_n} \left[u_\alpha v_\alpha + u_\beta v_\beta \right]_{\beta = \alpha} d\omega_n d\alpha
\]

\[
+ \int_0^I \int_{\omega_n} \left[u_\alpha v_\alpha - u_\beta v_\beta \right]_{\beta = -\alpha} d\omega_n d\alpha + \int_0^I \int_{\omega_n} u_\beta v_\beta \int_{\alpha = -1} d\omega_n d\beta = 0.
\]
Up to this point v has been any solution of the associate equation $M(v) = 0$. For v we now take the special solution
\[v = (\tilde{t} - \alpha)^{(n-1)/2}(\tilde{t} - \beta)^{(n-1)/2}, \quad n \geq 2. \]
This solution, termed the resolvent, is obtained by applying the ordinary method of separation of variables to $M(v) = 0$ and plays the role of "Riemann's function." It is convenient to observe that
\[\beta = \alpha \text{ implies } r = 0, \quad \alpha = t, \]
\[\beta = - \alpha \text{ implies } t = 0, \quad \alpha = r, \]
\[\alpha = \tilde{t} \text{ implies } v_\beta = 0. \]
More precisely, the last relations hold for $n \geq 3$, and (8) holds as a result of integrating the fundamental identity (5) over the "wedge" W, all integrals involved being proper integrals. However, if $n = 2$ then v_β is infinite on $\alpha = \tilde{t}$ and in order to obtain (8)—where improper integrals now appear—it is necessary to integrate first the identity (5) in (α, β, ϕ)-space over the smaller "wedge" W_ε, whose cross section in the $\alpha\beta$-plane is bounded by the four straight lines
\[\alpha = \beta, \quad \alpha = - \beta, \quad \beta = t - \varepsilon, \quad \beta = - t + \varepsilon, \]
where $0 < \varepsilon < \varepsilon < \tilde{t}$. Passing to the limit, letting $\varepsilon \to 0$ first, and afterwards letting $\varepsilon \to 0$, yields (8).

Thus the last term in (8) drops out altogether, eliminating the need for prescribed data on the characteristic half-cone, and the result is
\[\int_0^t \int_{\omega_n} (\tilde{t} - t)^{n-2} \mathcal{U}_t \left| \begin{array}{c} \omega_n \alpha = 0 \\ \mathcal{U}_n \end{array}
ight. d\omega_n dt \\
= \int_0^t \int_{\omega_n} \left[(P^2 - r^2)^{(n-3)/2} \mathcal{U}_n + (P^2 - r^2)^{(n-3)/2} \mathcal{U}_n \right] d\omega_n dr, \]
where the integration on the left is performed on the axis of the cone.

* Compare G. Darboux, loc. cit., p. 70, for $n = 2$.
C. Since

\[
\int_0^t dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{m-1}} dt_{m-1} \left[\int_0^{t_m} f(t_m) \, dt_m \right] = \int_0^t \frac{(t - \iota)^{m-1}}{(m - 1)!} f(t) \, dt,
\]

it follows that the preceding relation may be differentiated at least \(n - 1 \) times with respect to \(\iota \). Differentiating \(n - 2 \) times with respect to \(\iota \) yields the final formula:

\[
u(\Pi) = \nu(\Pi_0) + \frac{1}{(n - 2) \omega_n} \frac{\partial^{n-2}}{\partial \iota^{n-2}} \int_0^t \int_{\omega_n} \left[\left(\frac{n-3}{2} \right) \nu^2 + \frac{(n-2)}{2} \nu \right] \, d\omega_n \, dr.
\]

In the present notation, the usual formula\(^7\) for the solution of the Cauchy problem considered above may be written

\[
u(\Pi) = \frac{1}{(n - 2) \omega_n} \frac{\partial^{n-1}}{\partial \iota^{n-1}} \int_0^t \int_{\omega_n} \left(\frac{n-3}{2} \right) \nu^2 + \left(\frac{n-2}{2} \right) \nu \right] \, d\omega_n \, dr.
\]

The two formulas for \(\nu(\Pi) \) are easily seen to coincide,\(^8\) upon differentiating once with respect to \(\iota \) the first integral on the right-hand side of (10). This differentiation may be carried out directly under the integral sign if one first sets \(r = \iota p \). A subsequent integration by parts then yields the result.

In conclusion, the above argument shows the uniqueness of the solution of Cauchy's problem. More precisely, if the Cauchy problem considered has a solution \(\nu \) which possesses continuous second derivatives on \(t > 0 \) and continuous first derivatives on \(t \geq 0 \), then \(\nu \) is given by formula (9).

\(^8\) See M. H. Martin, loc. cit., page 244, for the case \(n = 2 \).