RIEMANN'S METHOD AND THE PROBLEM OF CAUCHY.
II. THE WAVE EQUATION IN \(n \) DIMENSIONS\(^1\)

J. B. DIAZ AND M. H. MARTIN

1. Introduction. In a recent paper\(^2\) Riemann's method for the solution of the problem of Cauchy for a linear hyperbolic partial differential equation \(L(u) = 0 \) of second order for one unknown function \(u \) of two independent variables \(x, y \) was modified by the introduction of a line integral \(I_1 = \int \{ Bdx - Ady \} \) vanishing on closed paths. Here \(A \) and \(B \) are bilinear forms in the partial derivatives \(u_x, u_y, v_x, v_y \); and \(v \), the resolvent, is a properly chosen solution (analogous to Riemann's function) of an associate equation \(M(v) = 0 \), the counterpart to the adjoint equation.

This modification opened the way to an extension of Riemann's method to the wave equation

\[
\frac{\partial^2}{\partial x^2} u + \frac{\partial^2}{\partial y^2} u - \frac{\partial^2}{\partial t^2} u = 0,
\]

in two dimensions. The line integral \(I_1 \) was replaced by an integral \(I_2 \) vanishing on closed surfaces and the associate equation \(M(v) = 0 \) turned out to be the Euler-Poisson equation\(^3\)

\[
M(v) = v_{\alpha \beta} + \frac{1}{\alpha - \beta} (v_{\alpha} - v_{\beta}) = 0,
\]

with the resolvent

\[
v = \alpha + \beta + 2[(\tilde{t} - \alpha)(\tilde{t} - \beta)]^{1/2}
\]

taking over the role of Riemann's function.

In the present paper the authors extend this method to the wave equation

\[
\frac{\partial^2}{\partial x_1^2} u + \cdots + \frac{\partial^2}{\partial x_n^2} u - \frac{\partial^2}{\partial t^2} u = 0,
\]

in \(n \) dimensions, \(n \geq 2 \), with, as might be expected, an \(n \)-dimensional integral \(I_n \), which vanishes over closed \(n \)-dimensional surfaces bounding \((n+1)\)-dimensional volumes, replacing \(I_1 \) and \(I_2 \). The associate

Presented to the Society, December 27, 1951; received by the editors November 19, 1951.

\(^1\) This paper was sponsored by the Office of Naval Research.

476
equation is now
\[M(v) = v_{a\beta} + \frac{(n-1)/2}{\alpha - \beta} (v_{a\alpha} - v_{a\beta}) = 0, \]
and the resolvent is
\[v = (\mathbb{I} - \lambda)^{(n-1)/2}(\mathbb{I} - \mathbb{B})^{(n-1)/2}. \]

2. The Laplacian $\Delta_2 u = u_{x_1x_1} + \cdots + u_{x_nx_n}$ in polar coordinates. Consider the generalization to n dimensions of the well known space polar coordinate system ϕ, θ, r, in three dimensions, where
\[
\begin{align*}
 x &= r \cos \phi \sin \theta, \quad y = r \sin \phi \sin \theta, \quad z = r \cos \theta, \\
 0 \leq \phi < 2\pi, \quad 0 \leq \theta \leq \pi, \quad r \geq 0,
\end{align*}
\]
that is, coordinates $\phi, \theta_1, \cdots, \theta_{n-2}, r$ with
\[
\begin{align*}
 x_1 &= r \cos \phi \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2}, \quad 0 \leq \phi < 2\pi, \\
 x_2 &= r \sin \phi \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2}, \quad 0 \leq \theta_1 \leq \pi, \\
 x_3 &= r \cos \phi \sin \theta_2 \cdots \sin \theta_{n-2}, \quad 0 \leq \theta_2 \leq \pi, \\
 &\quad \vdots \quad \vdots \quad \vdots
\end{align*}
\]
\[x_n = r \cos \theta_{n-2}, \quad r \geq 0. \]
The element of arc is given by
\[
\begin{align*}
 ds^2 &= r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2} d\phi^2 + r^2 \sin^2 \theta_2 \cdots \sin^2 \theta_{n-2} d\theta_1^2 + \cdots \nonumber \\
 &\quad + r^2 d\theta_{n-2}^2 + dr^2,
\end{align*}
\]
and if we write
\[
\begin{align*}
 y_1 &= \phi, \quad y_2 = \theta_1, \cdots, \quad y_{n-1} = \theta_{n-2}, \quad y_n = r, \\
 g_{11} &= r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}, \\
 g_{22} &= r^2 \sin^2 \theta_2 \cdots \sin^2 \theta_{n-2}, \cdots, \quad g_{n-1,n-1} = r^2, \quad g_{nn} = 1.
\end{align*}
\]
we shall have
\[
\Delta_2 u = \frac{1}{g^{1/2}} \sum_{i=1}^{n} \frac{\partial}{\partial y_i} \left(\frac{g^{1/2}}{g_{ii}} u_{y_i} \right),
\]
\[g^{1/2} = r^{n-1} \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-1}. \]
If we set $f_{i-1} = g^{1/2}/r^{n-2}g_{ii}$, $i = 1, \cdots, n-1$, so that
\[f_0 = \csc \theta_1 \sin \theta_2 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]

\[f_1 = \sin \theta_1 \sin \theta_2 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]

\[f_2 = \sin \theta_1 \sin^2 \theta_2 \sin \theta_3 \sin^2 \theta_4 \cdots \sin^{n-4} \theta_{n-2}; \]

\[f_n = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-3} \sin^{n-4} \theta_{n-2}; \]

\[f_{n-1} = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2}; \]

we find

\[\Delta_z u = f^{-1} \left[\frac{\partial}{\partial \phi} \left(\frac{f_0}{r^2} u_{\phi} \right) + \sum_{i=1}^{n-2} \frac{\partial}{\partial \theta_i} \left(\frac{f_i}{r^2} u_{\theta_i} \right) \right] + u_{rr} + \frac{n - 1}{r} u_r, \]

provided we write

\[f = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} = f_{n-2}. \]

We note in passing that the element of \((n - 1)\)-dimensional area on the unit sphere \(r = 1\) is

\[d\omega_n = f d\phi d\theta_1 \cdots d\theta_{n-2}, \]

and the \((n - 1)\)-dimensional area of the unit sphere is

\[\omega_n = \int_0^\pi \cdots \int_0^\pi \int_0^{2\pi} f d\phi d\theta_1 \cdots d\theta_{n-2} = \frac{2\pi^{n/2}}{\Gamma(n/2)}. \]

3. A fundamental identity. Starting with the polar coordinates \(\phi, \theta_1, \cdots, \theta_{n-2}, r\) in \(n\)-dimensional space we introduce coordinates \(\alpha, \beta, \phi, \theta_1, \cdots, \theta_{n-2}\) in \((n + 1)\)-dimensional space-time by setting

\[\alpha = t + r, \quad \beta = t - r, \]

and term \(\alpha, \beta\) characteristic coordinates, inasmuch as \(\alpha = \text{const.}, \beta = \text{const}\). are characteristic half-cones for the wave equation

\[L(u) = \frac{1}{4} (u_{tt} - \Delta_z u) = 0. \]

In these coordinates the operator \(L(u)\) takes the form

\[L(u) = \left[u_{\alpha \beta} - \frac{(n - 1)/2}{\alpha - \beta} (u_\alpha - u_\beta) \right] f \]

\[- (\alpha - \beta)^{-2} \left[\frac{\partial}{\partial \phi} (f_0 u_\phi) + \sum_{i=1}^{n-2} \frac{\partial}{\partial \theta_i} (f_i u_{\theta_i}) \right], \]

\[f = \sin \theta_1 \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2}. \]
with which we associate the operator

\[M(v) = \nu_{\alpha\beta} + \frac{(n-1)/2}{\alpha - \beta} (\nu_{\alpha} - \nu_{\beta}). \]

If we write

\[A = \int \nu_{\alpha\beta} \nu_{\beta}, \quad B = -\int \nu_{\alpha} \nu_{\alpha}, \]

\[\Phi = \int_0^{\alpha - \beta} \nu_{\alpha} - \nu_{\beta}, \quad \Theta_i = \int_0^{\alpha - \beta} \nu_{\alpha} - \nu_{\beta}, \]

\[j = 1, \ldots, n-2, \] a simple calculation shows that (note that \(\nu = \nu(\alpha, \beta) \))

\[(5) \quad A_{\alpha} + B_{\beta} + \Phi_{\phi} + \sum_{j=1}^{n-2} \frac{\partial \Theta_j}{\partial \theta_j} = (\nu_{\beta} - \nu_{\alpha})L(u) + (\nu_{\alpha} - \nu_{\alpha})fM(v). \]

This identity plays the role of a Green's identity in our investigation, the part of the adjoint equation being taken over by the associate equation \(M(v) = 0 \).

According to the generalized Green's theorem, the surface integral

\[I_n = \int_{S_n} \{ A d\beta d\phi d\theta_1 + \cdots + B d\alpha d\phi d\theta_1 + \cdots + \Phi d\alpha d\beta d\phi \cdots \} \]

\[= \int_{S_n} \{ A\nu_{\alpha} + B\nu_{\beta} + \Phi \nu_{\phi} + \cdots + \Theta_{n-2} \nu_{n-2} \} dS_n \]

(6) \hspace{1cm} (\text{where} \, \nu_{\alpha}, \nu_{\beta}, \cdots \, \text{are the components of the unit outer normal to} \, S_n) \]

when extended around a closed \(n \)-dimensional surface \(S_n \) bounding an \((n+1)\)-dimensional volume \(V_{n+1} \) can be expressed as a volume integral over \(V_{n+1} \), namely

\[\int_{V_{n+1}} \left(A_{\alpha} + B_{\beta} + \Phi_{\phi} + \sum_{j=1}^{n-2} \frac{\partial \Theta_j}{\partial \theta_j} \right) d\alpha d\beta d\phi d\theta_1 + \cdots + d\theta_{n-2}. \]

The following lemma is now obvious.

Lemma. The surface integral \(I_n \), taken around a closed \(n \)-dimensional surface \(S_n \), vanishes whenever \(u, v \) are regular solutions of \(L(u) = 0 \), and its associate equation \(M(v) = 0 \), respectively.

\[^4\text{Compare the "formule fondamentale" in the terminology of J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Paris, 1932, chapter II, esp. p. 83.}\]
It is worth while to note that each of A, B, Φ, Θ_1, \ldots, Θ_{n-2} is a bilinear form in the partial derivatives of first order of u and v with respect to α, β, ϕ, θ_1, \ldots, θ_{n-2}.

4. The problem of Cauchy. As Cauchy data on the hyperplane $t=0$ in $(n+1)$-dimensional space-time we take

$$u(x_1, \ldots, x_n, 0) = u^0(x_1, \ldots, x_n),$$

$$u_t(x_1, \ldots, x_n, 0) = u^1(x_1, \ldots, x_n),$$

the functions u^0, u^1 being given in advance. Let P_i denote the point with coordinates (x_1, \ldots, x_n, t) in space-time. The solution of the problem of Cauchy requires the value $u(P_i)$ of the solution u of $L(u) = 0$ to be expressed in terms of the initial data u^0, u^1 carried by the part of the initial hyperplane $t=0$ contained within the ("retrograde") characteristic half-cone with vertex at P_i, i.e., in terms of the initial data assigned to the points

$$(x_1 - x_1)^2 + \cdots + (x_n - x_n)^2 \leq \vec{P}, \quad t = 0.$$

We assume $t>0$ and consider the $(n+1)$-dimensional conical volume C bounded in space-time by the characteristic hypercone with vertex at P_i and the initial hyperplane $t=0$. The axis of C is the straight line P_0P_i in space-time traced out by P_i as t ranges from 0 to \vec{t}. If at each point P_i we introduce polar coordinates $\phi, \theta_1, \ldots, \theta_{n-2}, r$ with pole at P_i, the conical volume C is described by the inequalities

$$C: \quad 0 \leq \phi < 2\pi, \quad 0 \leq \theta_j \leq \pi, \quad 0 \leq r \leq \vec{t} - t, \quad 0 \leq t \leq \vec{t}$$

$$(j = 1, \ldots, n - 2).$$

When we take $\alpha, \beta, \phi, \theta_1, \ldots, \theta_{n-2}$ as rectangular coordinates in a second $(n+1)$-dimensional space, C appears as a "wedge"

$$W: \quad 0 \leq \alpha \leq \vec{t}, \quad -\alpha \leq \beta \leq +\alpha, \quad 0 \leq \phi < 2\pi, \quad 0 \leq \theta_j \leq \pi$$

$$(j = 1, \ldots, n - 2).$$

That part of the boundary of C formed by the mantle of the characteristic hypercone becomes the face $\alpha=\vec{t}$ of W; the base $t=0$ of C is represented by the face $\beta=-\alpha$ of W; and the axis P_0P_i of C by the face $\beta=\alpha$ of W. The vertex P_i of C appears as the edge $\alpha=\beta=\vec{t}$ of W; the periphery of the base of C (the intersection of the initial plane with the characteristic hypercone) is replaced by the edge $\alpha=-\beta=\vec{t}$ of W; and center P_0 of the base of C by the edge $\alpha=\beta=0$ of W.

To reformulate the problem of Cauchy in $(\alpha, \beta, \phi, \theta_1, \ldots, \theta_{n-2})$-

* Compare M. H. Martin, loc. cit., p. 245.
space we observe that the carrier $t=0$ becomes the hyperplane $\beta = -\alpha$ upon which, from (3), we assign

$$u_\phi = u_\phi, \quad u_{\theta j} = u_{\theta j}, \quad u_a = (u_\theta + u_\phi)/2, \quad u_\beta = -(u_\theta - u_\phi)/2$$

as initial data. One would accordingly seek an expression for the value of the solution u of $L(u) = 0$, for $L(u)$ as defined in (4), along the edge $\alpha = \beta = t$ of W in terms of the above initial data carried by the face $\beta = -\alpha$ of W.

To solve the problem of Cauchy as originally formulated we apply the lemma of the preceding section to the closed surface S_n which is the boundary of the wedge W and obtain

$$I_n + I_n + I_n + \sum_{j=1}^{n-2} \left(I_n + I_n \right) = 0.$$

For single-valued solutions, u must be periodic of period 2π in ϕ and it follows from the definition of Φ that

$$I_n + I_n = 0,$$

since the external normals to S_n have opposite directions on the faces $\phi = 0, \phi = 2\pi$. Since Θ_j involves f_j, and f_j contains $\sin \theta_j$ as a factor for $j = 1, \cdots, n-2$, it is clear that

$$I_n = I_n = 0,$$

and the above result simplifies to

$$I_n + I_n + I_n = 0.$$

The integration of I_n in (6) over S_n yields

$$\int_0^1 \int_{u_n} \left[-A + B\right]_{\beta = \alpha} f^{-1} \omega \, d\alpha + \int_0^1 \int_{u_n} \left[A + B\right]_{\beta = \alpha} f^{-1} \omega \, d\alpha$$

and when we employ the definitions of A and B, we find

$$\int_0^1 \int_{u_n} \left[u_\alpha v_\alpha + u_\beta v_\beta\right]_{\beta = \alpha} \omega \, d\alpha$$

and

$$\int_0^1 \int_{u_n} \left[u_\alpha v_\alpha - u_\beta v_\beta\right]_{\beta = \alpha} \omega \, d\alpha + \int_0^1 \int_{u_n} u_\beta v_\beta \omega \, d\beta = 0.$$
Up to this point \(v \) has been any solution of the associate equation \(M(v) = 0 \). For \(v \) we now take the special solution\(^6\)

\[
v = (t - \alpha)^{(n-1)/2}(i - \beta)^{(n-1)/2};
\]

This solution, termed the *resolvent*, is obtained by applying the ordinary method of separation of variables to \(M(v) = 0 \) and plays the role of "Riemann's function." It is convenient to observe that

- \(\beta = \alpha \) implies \(\tau = 0, \alpha = t \),

\[
\frac{v_\alpha - v_\beta}{2} = 0, \quad \frac{v_\alpha + v_\beta}{2} = -\frac{n - 1}{2} (i - t)^{n-2},
\]

- \(\beta = -\alpha \) implies \(\tau = 0, \alpha = r \),

\[
\frac{v_\alpha - v_\beta}{2} = -\frac{n - 1}{2} (\tau^2 - \tau^2)^{(n-3)/2} r, \\
\frac{v_\alpha + v_\beta}{2} = -\frac{n - 1}{2} (\tau^2 - \tau^2)^{(n-3)/2} i,
\]

- \(\alpha = \bar{i} \) implies \(v_\beta = 0 \).

More precisely, the last relations hold for \(n \geq 3 \), and (8) holds as a result of integrating the fundamental identity (5) over the "wedge" \(W \), all integrals involved being proper integrals. However, if \(n = 2 \) then \(v_\beta \) is infinite on \(\alpha = \bar{i} \) and in order to obtain (8)—where improper integrals now appear—it is necessary to integrate first the identity (5) in \((\alpha, \beta, \phi)\)-space over the smaller "wedge" \(W_{e, n} \) whose cross section in the \(\alpha \beta \)-plane is bounded by the four straight lines

\[
\alpha = \beta, \quad \alpha = -\beta, \quad \beta = \bar{i} - \eta, \quad \alpha = \bar{i} - \eta,
\]

where \(0 < \eta < \epsilon < \bar{i} \). Passing to the limit, letting \(\eta \to 0 \) first, and afterwards letting \(\epsilon \to 0 \), yields (8).

Thus the last term in (8) drops out altogether, eliminating the need for prescribed data on the characteristic half-cone, and the result is

\[
\int_0^I \int_{\omega_n} (\bar{i} - t)^{n-2} \frac{d\omega dt}{r=0} \\
= \int_0^I \int_{\omega_n} [(\bar{i}^2 - \tau^2)^{(n-3)/2} \tau_0^0 + (\bar{i}^2 - \tau^2)^{(n-3)/2} \tau \cdot \eta^1] d\omega dr,
\]

where the integration on the left is performed on the axis of the cone.

\(^6\) Compare G. Darboux, loc. cit., p. 70, for \(n = 2 \).
it follows that the preceding relation may be differentiated at least \(n - 1 \) times with respect to \(t \). Differentiating \(n - 2 \) times with respect to \(t \) yields the final formula:

\[
\frac{\partial^{n-2}}{\partial t^{n-2}} \int_0^t \int_{\omega_n} \left[(t^2 - r^2)^{(n-3)/2} t u_r^2 + (t^2 - r^2)^{(n-2)/2} r u^1 \right] d\omega_n dr.
\]

In the present notation, the usual formula\(^7\) for the solution of the Cauchy problem considered above may be written

\[
u(P_t) = \frac{1}{(n-2)\omega_n} \int_0^t \int_{\omega_n} (t^2 - r^2)^{(n-3)/2} r u^1 d\omega_n dr.
\]

The two formulas for \(\nu(P_t) \) are easily seen to coincide,\(^8\) upon differentiating once with respect to \(t \) the first integral on the right-hand side of (10). This differentiation may be carried out directly under the integral sign if one first sets \(r = \tilde{r}p \). A subsequent integration by parts then yields the result.

In conclusion, the above argument shows the uniqueness of the solution of Cauchy’s problem. More precisely, if the Cauchy problem considered has a solution \(u \) which possesses continuous second derivatives on \(t > 0 \) and continuous first derivatives on \(t \geq 0 \), then \(u \) is given by formula (9).

\(\text{University of Maryland} \)

\(^8\) See M. H. Martin, loc. cit., page 244, for the case \(n = 2 \).