1. Introduction. Suppose we are given a finite abelian group A of order n, the group operation being addition. If

$$\begin{pmatrix} a_1, a_2, \cdots, a_n \\ c_1, c_2, \cdots, c_n \end{pmatrix}$$

is a permutation of the elements of A, then the differences $c_i - a_i = b_1, \cdots, c_n - a_n = b_n$ are n elements of A, not in general distinct, such that $\sum_{i=1}^{n} b_i = \sum_{i=1}^{n} c_i - \sum_{i=1}^{n} a_i = 0$, since the sum of the c's and the sum of the a's are each the sum of all the elements of A. The problem is to show that conversely given a function $\phi(i) = b_i$, $i = 1, \cdots, n$, with values b_i in A subject only to the condition that

$$\sum_{i=1}^{n} b_i = 0,$$

then there exists a permutation

$$\begin{pmatrix} a_1, \cdots, a_n \\ c_1, \cdots, c_n \end{pmatrix}$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \cdots, n$, if the b's are appropriately renumbered. This problem1 is solved in this paper.

2. Solution of the problem.

Theorem. Given a function $\phi(i) = b_i$, $i = 1, \cdots, n$, with b_i in A, an additive abelian group of order n, subject to the condition $\sum_{i=1}^{n} b_i = 0$, there exists a permutation

$$\begin{pmatrix} a_1, \cdots, a_n \\ c_1, \cdots, c_n \end{pmatrix}$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \cdots, n$, the b's being appropriately renumbered.

Proof. If we take a_1, a_2, \cdots, a_n as the elements of A in an arbitrary but fixed order, the problem consists in renumbering the b's so that

$$a_1 + b_1 = c_1, a_2 + b_2 = c_2, \cdots, a_n + b_n = c_n$$

are all distinct.

It is sufficient to prove that given a permutation whose differences are $b_1, b_2, \cdots, b_{n-2}, b_{n-1}'$, we can find another whose differences $b_1, b_2, \cdots, b_{n-2}, b_{n-1}, b_n$ are the same except that two of them, b_{n-1}' and b_n', have been replaced by two others, b_{n-1} and b_n, with the

1 For the cyclic group this shows the truth of a conjecture of Dr. George Cramer.
A COMBINATORIAL PROBLEM ON ABELIAN GROUPS 585

same sum $b_{n-1} + b_n = b'_{n-1} + b'$. For the identical permutation has differences 0, 0, \cdots, 0 and we may replace these differences two at a time to give differences b_1, w_2, 0, \cdots, 0; b_1, b_2, w_3, 0, \cdots, 0; \cdots; b_1$, b_2, \cdots, b_{n-1}, w_n where $w_2 = -b_1$, $w_3 = -b_1 - b_2$, \cdots, $w_n = -b_1 - b_2 - \cdots - b_{n-1} = b_n$.

Thus we suppose given an incomplete permutation
\[
\begin{pmatrix} a_1, \cdots, a_{n-2}, \cdots \end{pmatrix} \\
\begin{pmatrix} c_1, \cdots, c_{n-2}, \cdots \end{pmatrix}
\]
with differences b_1, b_2, \cdots, b_{n-2} which we represent by a table:
\[
\begin{array}{cccc}
\begin{array}{c}
\beta_1 \\
\beta_i \\
\beta_{n-2} \\
\end{array} & \begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_{n-2} \\
\end{array} & \begin{array}{c}
a_2 \\
a_{n-2} \\
a_n \\
\end{array} & \\
\begin{array}{c}
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\end{array} & \begin{array}{c}
\beta_2 \\
\beta_{n-2} \\
\beta_n \\
\end{array} & \begin{array}{c}
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
b_{n-1} \\
b_n \\
\gamma_0 \\
\end{array} \\
\begin{array}{c}
c_1 \\
c_2 \\
c_{n-2} \\
\end{array} & \begin{array}{c}
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\end{array} & \begin{array}{c}
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\end{array} & \begin{array}{c}
u_0 \\
u_{n-1} \\
u_n \\
\end{array}
\end{array}
\] (2.1)

In this table $a_i + \beta_i = c_i$, $i = 1$, \cdots, $n-2$, and we have left over two a's, two b's, and the two elements u_0 and u_{-1} which together with c_1, c_2, \cdots, c_{n-2} make up all the elements of A. Here we have
\[
\sum_{i=1}^{n-2} a_i + a_{n-1} + a_n + \sum_{i=1}^{n-2} \beta_i + b_{n-1} + b_n = \sum_{i=1}^{n-2} c_i + u_{-1} + u_0
\] (2.2)

since each of $\sum_{i=1}^{n-2} a_i$ and $\sum_{i=1}^{n-2} \beta_i + u_{-1} + u_0$ is the sum of all the elements of A and by hypothesis $\sum_{i=1}^{n} b_i = 0$. But since $a_i + \beta_i = c_i$, $i = 1$, \cdots, $n-2$, we shall have from (2.2)
\[
a_{n-1} + a_n + b_{n-1} + b_n = u_{-1} + u_0.
\] (2.3)

In (2.3) if one a plus one b is one of the u's, then the other a plus the other b is the remaining u and we can complete (2.1) to a full permutation with differences b_1, \cdots, b_n as was to be done. If not, then the equation $\sum_{i=1}^{n-2} a_i + a_{n-1} + a_n + \sum_{i=1}^{n-2} \beta_i + b_{n-1} + b_n = \sum_{i=1}^{n-2} c_i + u_{-1} + u_0$ has as its solution $x = a_r$, $1 \leq r \leq n-2$. Now in (2.1) let us replace b_r and c_r by b_{n-1} and u_{-1} leading to the following table:
\[
\begin{array}{cccc}
\begin{array}{c}
a_1 \\
a_2 \\
a_{n-2} \\
a_{n-1} \\
a_n \\
\end{array} & \begin{array}{c}
a_1 \\
a_2 \\
a_{n-2} \\
a_{n-1} \\
a_n \\
\end{array} & \begin{array}{c}
a_1 \\
a_2 \\
a_{n-2} \\
a_{n-1} \\
a_n \\
\end{array} & \begin{array}{c}
a_1 \\
a_2 \\
a_{n-2} \\
a_{n-1} \\
a_n \\
\end{array} \\
\begin{array}{c}
\beta_1 \\
\beta_2 \\
\beta_{n-2} \\
\beta_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\beta_1 \\
\beta_2 \\
\beta_{n-2} \\
\beta_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\beta_1 \\
\beta_2 \\
\beta_{n-2} \\
\beta_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\beta_1 \\
\beta_2 \\
\beta_{n-2} \\
\beta_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} \\
\begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_{n-2} \\
\alpha_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_{n-2} \\
\alpha_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_{n-2} \\
\alpha_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\alpha_{n-2} \\
\alpha_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} \\
\begin{array}{c}
c_1 \\
c_2 \\
c_{n-2} \\
c_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
c_1 \\
c_2 \\
c_{n-2} \\
c_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
c_1 \\
c_2 \\
c_{n-2} \\
c_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array} & \begin{array}{c}
c_1 \\
c_2 \\
c_{n-2} \\
c_n \\
\gamma_1 \\
\gamma_2 \\
\gamma_{n-2} \\
\gamma_n \\
\end{array}
\end{array}
\] (2.4)

and as from (2.1) we have
\[
a_{n-1} + a_n + b_{r_1} + b_n = u_0 + c_{r_1}.
\] (2.5)

In (2.5) if one a plus one b is u_0 or c_{r_1}, the same holds for the other a, b, and c_{r_1} or u_0 and we have found a solution to the problem. If
not, the equation \(x + b_{r_1} = u_0 \) has a solution \(x = a_{r_2} \) with \(1 \leq r_2 \leq n - 2 \). Let us then replace \(b_{r_2} \) and \(c_{r_2} \) by \(b_{r_1} \) and \(u_0 \) in (2.4) leading to another incomplete permutation. If we continue this process for \(i \) steps, we have (if \(a_{r_1}, \ldots, a_{r_i} \) are all different)

\[
\begin{align*}
& a_1 \cdots a_{r_1} a_{r_2} \cdots a_{r_i} \cdots a_{n-2} a_{n-1} a_n \\
& b_1 \cdots b_{n-1} b_{r_1} b_{r_2} \cdots b_{r_i-1} b_{n-2} b_{r_i} b_n \\
& c_1 \cdots c_{n-1} c_{r_1} \cdots c_{r_i-2} \cdots c_{n-2} c_{r_i} c_{r_i}.
\end{align*}
\]

At the \(i \)th stage we solve the equation \(x + b_{r_i} = c_{r_i-1} \). If this \(x \) is \(a_{n-1} \) or \(a_n \), the relation

\[
(2.7) \quad a_{n-1} + a_n + b_{r_i} + b_n = c_{r_i-1} + c_{r_i}
\]

leads to a solution of the problem. If not, \(x = a_{r_{i+1}} \) with \(1 \leq r_{i+1} \leq n - 2 \) and we proceed to the \((i+1)\)th stage by replacing \(b_{r_{i+1}} \) and \(c_{r_{i+1}} \) by \(b_{r_i} \) and \(c_{r_i-1} \). Hence either (1) we reach a solution of the problem or (2) the process continues indefinitely. We shall show that the second alternative cannot arise. In the second alternative since \(a_{r_1}, a_{r_2}, \ldots \) are drawn from the finite set \(a_1, \ldots, a_{n-2} \), there will be indices \(i \) and \(j \geq i \) such that \(a_{r_1}, \ldots, a_{r_i}, \ldots, a_{r_j} \) are all distinct, but \(a_{r_{j+1}} = a_{r_i} \). Then at the \(j \)th stage we have

\[
\begin{align*}
& a_1 \cdots a_{r_j} \cdots a_{r_i} \cdots a_{n-2} a_{n-1} a_n \\
& b_1 \cdots b_{r_{j-1}} \cdots b_{r_{j-2}} \cdots b_{n-2} b_{r_j} b_n \\
& c_1 \cdots c_{r_{j-2}} \cdots c_{r_{j-3}} \cdots c_{n-2} c_{r_j} c_{r_j}.
\end{align*}
\]

and the solution of \(x + b_{r_j} = c_{r_{j-1}} \) is \(x = a_{r_j} \). At the \((j+1)\)th stage the \(b \)'s and \(c \)'s left over are

\[
(2.9) \quad b_{r_{i+1}} b_n \\
\]

whence

\[
(2.10) \quad a_{n-1} + a_n + b_{r_{i+1}} + b_n = c_{r_j} + c_{r_{i-1}}.
\]

But at the \((i-1)\)th stage we had (from (2.7) or (2.3) if \(i = 1 \))

\[
(2.11) \quad a_{n-1} + a_n + b_{r_{i-1}} + b_n = c_{r_{i-2}} + c_{r_{i-1}}.
\]

Comparing (2.10) and (2.11) we find that

\[
(2.12) \quad c_{r_j} = c_{r_{i-1}}.
\]

But this is a contradiction since \(j > i - 1 \) and \(c_{r_j} \) and \(c_{r_{i-1}} \) are distinct elements in (2.8). Thus the second alternative does not arise and we
find a solution to the problem in not more than \(n - 2 \) steps.

3. **Application to Latin squares.** Consider a Latin square which is the Cayley table for an abelian group of order \(n \)

\[
\begin{array}{cccc}
a_{11}, & a_{12}, & \cdots, & a_{1n} \\
a_{21}, & a_{22}, & \cdots, & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}, & a_{n2}, & \cdots, & a_{nn}.
\end{array}
\]

(3.1)

Here if \(a_1 = 0, a_2, \cdots, a_n \) are the elements of \(A \), then in the table above \(a_{ij} = a_i + a_j \). If

\[
\left(a_1, \cdots, a_n \right) \\
\left(c_1, \cdots, c_n \right)
\]

is a permutation of the elements of \(A \), then \(c_r \) is below \(a_r \) in the \(k \)th row if \(c_r - a_r = b_r = a_b \). We say that \(c_1, c_2, \cdots, c_r, \cdots, c_n \) agrees with the \(k \)th row in position \(r \). Thus the theorem asserts that there exists a permutation agreeing with the \(i \)th row \(k_i \) times if and only if

\[
k_1 + k_2 + \cdots + k_n = n,
\]

and

\[
k_1a_1 + k_2a_2 + \cdots + k_na_n = 0,
\]

where (3.2.1) is a count of the \(k \)'s and (3.2.2) is an equation in \(A \). The sum of all the elements of an abelian group \(A \) is known to be 0 unless \(A \) contains a unique element of order 2, in which case the sum is this unique element. In the special case in which \(k_1 = k_2 = \cdots = k_n = 1 \) we say that \(c_1, \cdots, c_n \) is a transversal of the Latin square. Here (3.2.2) does not hold if \(A \) contains a unique element of order 2 and there is no transversal. But if \(A \) does not contain a unique element of order 2, then (3.2.2) does hold and there is a transversal of the Latin square. This special case of the theorem above was proved by Lowell Paige in his doctoral dissertation at the University of Wisconsin.

Ohio State University