A COMBINATORIAL PROBLEM ON ABELIAN GROUPS

MARSHALL HALL, JR.

1. Introduction. Suppose we are given a finite abelian group A of order n, the group operation being addition. If

$$(a_1, a_2, \ldots, a_n)$$

$$(c_1, c_2, \ldots, c_n)$$

is a permutation of the elements of A, then the differences $c_i - a_i = b_1, \ldots, c_n - a_n = b_n$ are n elements of A, not in general distinct, such that $\sum_{i=1}^{n-1} b_i = \sum_{i=1}^{n} c_i - \sum_{i=1}^{n} a_i = 0$, since the sum of the c's and the sum of the a's are each the sum of all the elements of A. The problem is to show that conversely given a function $\phi(i) = b_i$, $i = 1, \ldots, n$, with values b_i in A subject only to the condition that $\sum_{i=1}^{n-1} b_i = 0$, then there exists a permutation

$$(a_1, \ldots, a_n)$$

$$(c_1, \ldots, c_n)$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \ldots, n$, if the b's are appropriately renumbered. This problem1 is solved in this paper.

2. Solution of the problem.

Theorem. Given a function $\phi(i) = b_i$, $i = 1, \ldots, n$, with b_i in A, an additive abelian group of order n, subject to the condition $\sum_{i=1}^{n-1} b_i = 0$, there exists a permutation

$$(a_1, \ldots, a_n)$$

$$(c_1, \ldots, c_n)$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \ldots, n$, the b's being appropriately renumbered.

Proof. If we take a_1, a_2, \ldots, a_n as the elements of A in an arbitrary but fixed order, the problem consists in renumbering the b's so that $a_1 + b_1 = c_1, a_2 + b_2 = c_2, \ldots, a_n + b_n = c_n$ are all distinct.

It is sufficient to prove that given a permutation whose differences are $b_1, b_2, \ldots, b_{n-2}, b_{n-1}, b_n$, we can find another whose differences $b_1, b_2, \ldots, b_{n-2}, b_{n-1}, b_n$ are the same except that two of them, b_{n-1}' and b_n', have been replaced by two others, b_{n-1} and b_n, with the

1 For the cyclic group this shows the truth of a conjecture of Dr. George Cramer.
same sum \(b_{n-1} + b_n = b'_{n-1} + b' \). For the identical permutation has differences 0, 0, \(\cdots \), 0 and we may replace these differences two at a time to give differences \(b_1, w_2, 0, \cdots, 0, b_2, w_3, 0, \cdots, 0; \cdots; b_1, b_2, \cdots, b_{n-1}, w_n \) where \(w_2 = -b_1, w_3 = -b_1 - b_2, \cdots, w_n = -b_1 - b_2 - \cdots - b_{n-1} = b_n \).

Thus we suppose given an incomplete permutation

\[
\begin{pmatrix}
 a_1, & \cdots, & a_{n-2}, & a_n \\
 c_1, & \cdots, & c_{n-2}, & c_n
\end{pmatrix}
\]

with differences \(b_1, b_2, \cdots, b_{n-2} \) which we represent by a table:

\[
\begin{array}{cccc}
 a_1 & a_2 & \cdots & a_{n-2} & a_n \\
 c_1 & c_2 & \cdots & c_{n-2} & c_n \\
 b_1 & b_2 & \cdots & b_{n-2} & b_{n-1} & b_n \\
 c_1 & c_2 & \cdots & c_{n-2} & u_{n-1} & u_0.
\end{array}
\]

In this table \(a_i + b_i = c_i, \; i = 1, \cdots, n-2 \), and we have left over two \(a \)'s, two \(b \)'s, and the two elements \(u_0 \) and \(u_{-1} \) which together with \(c_1, c_2, \cdots, c_{n-2} \) make up all the elements of \(A \). Here we have

\[
\sum_{i=1}^{n-2} a_i + a_{n-1} + a_n + \sum_{i=1}^{n-2} b_i + b_{n-1} + b_n = \sum_{i=1}^{n-2} c_i + u_{-1} + u_0
\]

since each of \(\sum_{i=1}^{n-2} a_i \) and \(\sum_{i=1}^{n-2} c_i + u_{-1} + u_0 \) is the sum of all the elements of \(A \) and by hypothesis \(\sum_{i=1}^{n-1} b_i = 0 \). But since \(a_i + b_i = c_i, \; i = 1, \cdots, n-2 \), we shall have from (2.2)

\[
(2.3) \quad a_{n-1} + a_n + b_{n-1} + b_n = u_{-1} + u_0.
\]

In (2.3) if one \(a \) plus one \(b \) is one of the \(u \)'s, then the other \(a \) plus the other \(b \) is the remaining \(u \) and we can complete (2.1) to a full permutation with differences \(b_1, \cdots, b_n \) as was to be done. If not, then the equation \(x + b_{n-1} = u_0 \) has as its solution \(x = a_{r_1}, \; 1 \leq r_1 \leq n-2 \). Now in (2.1) let us replace \(b_{r_1} \) and \(c_{r_1} \) by \(b_{n-1} \) and \(u_{-1} \) leading to the following table:

\[
\begin{array}{cccc}
 a_1 & \cdots & a_{r_1} & \cdots & a_{n-2} & a_n \\
 c_1 & \cdots & u_{-1} & \cdots & c_{n-2} & u_0 \; c_{r_1} \\
 b_1 & \cdots & b_{n-1} & \cdots & b_{n-2} & b_{r_1} & b_n \\
\end{array}
\]

and as from (2.1) we have

\[
(2.5) \quad a_{n-1} + a_n + b_{r_1} + b_n = u_0 + c_{r_1}.
\]

In (2.5) if one \(a \) plus one \(b \) is \(u_0 \) or \(c_{r_1} \), the same holds for the other \(a, b, \) and \(c_{r_1} \) or \(u_0 \), and we have found a solution to the problem. If
not, the equation $x + b_{r_1} = c_{r_1}$ has a solution $x = a_{r_2}$ with $1 \leq r_2 \leq n - 2$. Let us then replace b_{r_2} and c_{r_2} by b_{r_1} and c_{r_1} in (2.4) leading to another incomplete permutation. If we continue this process for i steps, we have (if a_{r_1}, \ldots, a_{r_i} are all different)

$$a_1 \cdots a_{r_1} \cdots a_{r_i} \cdots a_{n-2} a_{n-1} a_n$$

(2.6) $$b_1 \cdots b_{r_{i-1}} b_{r_i} \cdots b_{n-2} b_{r_{i-1}} b_{r_i} b_n$$

$$c_1 \cdots c_{r_{i-1}} c_{r_i} \cdots c_{n-2} c_{r_{i-1}} c_{r_i}.$$

At the ith stage we solve the equation $x + b_{r_i} = c_{r_{i-1}}$. If this x is a_{n-1} or a_n, the relation

$$a_{n-1} + a_n + b_{r_i} + b_n = c_{r_{i-1}} + c_{r_i}$$

(2.7)

leads to a solution of the problem. If not, $x = a_{r_{i+1}}$ with $1 \leq r_{i+1} \leq n - 2$ and we proceed to the $(i + 1)$th stage by replacing $b_{r_{i+1}}$ and $c_{r_{i+1}}$ by b_{r_i} and $c_{r_{i-1}}$. Hence either (1) we reach a solution of the problem or (2) the process continues indefinitely. We shall show that the second alternative cannot arise. In the second alternative since a_{r_1}, a_{r_2}, \ldots are drawn from the finite set a_1, \ldots, a_{n-2}, there will be indices i and $j \geq i$ such that $a_{r_1}, \ldots, a_{r_i}, \ldots, a_{r_j}$ are all distinct, but $a_{r_{j+1}} = a_{r_i}$. Then at the jth stage we have

$$a_1 \cdots a_{r_i} \cdots a_{r_j} \cdots a_{n-2} a_{n-1} a_n$$

(2.8) $$b_1 \cdots b_{r_{j-1}} b_{r_{j-1}} \cdots b_{n-2} b_{r_{j-1}} b_{r_j} b_n$$

$$c_1 \cdots c_{r_{j-1}} c_{r_{j-1}} \cdots c_{n-2} c_{r_{j-1}} c_{r_j}$$

and the solution of $x + b_{r_j} = c_{r_{j-1}}$ is $x = a_{r_i}$. At the $(j + 1)$th stage the b's and c's left over are

$$b_{r_{i-1}} b_n$$

$$c_{r_j} c_{r_{j-1}}$$

(2.9)

whence

$$a_{n-1} + a_n + b_{r_{i-1}} + b_n = c_{r_j} + c_{r_{i-1}}.$$

(2.10)

But at the $(i - 1)$th stage we had (from (2.7) or (2.3) if $i = 1$)

$$a_{n-1} + a_n + b_{r_{i-1}} + b_n = c_{r_{i-2}} + c_{r_{i-1}}.$$

(2.11)

Comparing (2.10) and (2.11) we find that

$$c_{r_j} = c_{r_{i-1}}.$$

(2.12)

But this is a contradiction since $j > i - 1$ and c_{r_j} and $c_{r_{i-1}}$ are distinct elements in (2.8). Thus the second alternative does not arise and we
find a solution to the problem in not more than \(n - 2 \) steps.

3. **Application to Latin squares.** Consider a Latin square which is the Cayley table for an abelian group of order \(n \)

\[
\begin{array}{cccc}
 a_{11}, & a_{12}, & \cdots, & a_{1n} \\
 a_{21}, & a_{22}, & \cdots, & a_{2n} \\
 \cdots & \cdots & \cdots & \cdots \\
 a_{n1}, & a_{n2}, & \cdots, & a_{nn}.
\end{array}
\]

(3.1)

Here if \(a_1 = 0, a_2, \cdots, a_n \) are the elements of \(A \), then in the table above \(a_{ij} = a_i + a_j \). If

\[
\begin{pmatrix}
 a_1, & \cdots, & a_n \\
 c_1, & \cdots, & c_n
\end{pmatrix}
\]

is a permutation of the elements of \(A \), then \(c_r \) is below \(a_r \) in the \(k \)th row if \(c_r - a_r = b_r = a_b \). We say that \(c_1, c_2, \cdots, c_r, \cdots, c_n \) agrees with the \(k \)th row in position \(r \). Thus the theorem asserts that there exists a permutation agreeing with the \(i \)th row \(k_i \) times if and only if

(3.2.1) \[k_1 + k_2 + \cdots + k_n = n, \]

and

(3.2.2) \[k_1 a_1 + k_2 a_2 + \cdots + k_n a_n = 0, \]

where (3.2.1) is a count of the \(k \)'s and (3.2.2) is an equation in \(A \). The sum of all the elements of an abelian group \(A \) is known to be 0 unless \(A \) contains a unique element of order 2, in which case the sum is this unique element. In the special case in which \(k_1 = k_2 = \cdots = k_n = 1 \) we say that \(c_1, \cdots, c_n \) is a transversal of the Latin square. Here (3.2.2) does not hold if \(A \) contains a unique element of order 2 and there is no transversal. But if \(A \) does not contain a unique element of order 2, then (3.2.2) does hold and there is a transversal of the Latin square. This special case of the theorem above was proved by Lowell Paige in his doctoral dissertation at the University of Wisconsin.

Ohio State University