A NOTE ON BERNOULLI NUMBERS AND POLYNOMIALS
OF HIGHER ORDER

L. CARLITZ

1. Introduction. Following the notation of Nörlund [5, Chap. 6], we defined $B_m^{(k)}, B_m^{(k)}(u)$ by means of

\begin{equation}
\left(\frac{x}{e^x - 1} \right)^k e^{zu} = \sum_{m=0}^{\infty} B_m^{(k)}(u) \frac{x^m}{m!}, \quad B_m^{(k)} = B_m^{(k)}(0) \quad (k \geq 1).
\end{equation}

In the present paper we prove a number of theorems concerning $B_m^{(k)}(u)$. It will be convenient to employ the abbreviations

\begin{equation}
\begin{aligned}
(m)_k &= m(m-1) \cdots (m-k+1), & (m)_0 &= 1, \\
[m]_k &= (a^m-1)(a^{m-1}-1) \cdots (a^{m-k+1}-1), & [m]_0 &= 1.
\end{aligned}
\end{equation}

In the following theorems p denotes an odd prime; the rational numbers a, u are integral (mod p) and $p | a$. We now state the following theorems.

Theorem 1. The number

\begin{equation}
U_m^{(k)} = [m]_k B_m^{(k)}(u)/(m)_k \quad (m \geq k \geq 1)
\end{equation}

is integral (mod p).

Theorem 2. If $k < p-1, m \not\equiv 0, 1, \cdots, k-1 \pmod{p-1}, m \geq k \geq 1$, then $B_m^{(k)}(u)/(m)_k$ is integral (mod p). In particular $B_m^{(k)}(u)$ is integral (mod p).

Theorem 3. If $k < p-1, m \not\equiv 0, 1, \cdots, k-1 \pmod{p-1}, m \geq k \geq 1, p^r | (m)_k$, then the numerator of $B_m^{(k)}(u)$ is divisible by p^r.

Theorem 4. Let $U_m^{(k)}$ have the same meaning as in (1.3). If $(p-1)p^{r-1} | b, m \geq rb+k, k \geq 1$, then

\begin{equation}
\sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} U_{m+s+b}^{(k)} \equiv 0 \pmod{p^r}.
\end{equation}

Theorem 5. Put

\begin{equation}
T_m^{(k)} = B_m^{(k)}(u)/(m)_k \quad (m \geq k \geq 1).
\end{equation}

If $k < p-1, m \not\equiv 0, 1, \cdots, k-1 \pmod{p-1}, m \geq rb+k$, then

Presented to the Society, February 23, 1952; received by the editors November 21, 1951.
\begin{equation}
\sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} T_{m+s}^{(k)} \equiv 0 \pmod{p^r}.
\end{equation}

\textbf{Theorem 6.} If \(k < p - 1 \), \(m \equiv 0, 1, \ldots, k-1 \pmod{p-1} \), \(m \geq rb + k \), \(r \geq k \), then

\begin{equation}
\sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} B_{m+s}^{(k)}(u) \equiv 0 \pmod{p^{(r-k)^r}}.
\end{equation}

\textbf{Theorem 7.} If \(k \leq p - 1 \), \(m \equiv s_0 \pmod{p-1} \), \(0 \leq s_0 \leq k-1 \), then

\begin{equation}
pB_m^{(k)}(u) \equiv \frac{(-1)^{k-s_0}}{(k-1)!} \binom{m}{s_0} \binom{k-1}{s_0} B_{s_0}^{(k)}(u) \pmod{p^r}.
\end{equation}

\textbf{Theorem 8.} Let \(m \equiv s_0 \pmod{p-1} \), \(0 \leq s_0 < p - 1 \). If \(s_0 \neq 0 \), then

\begin{equation}
pB_m^{(p)}(u) \equiv \frac{m^p - u^{s_0}}{m - s_0} \pmod{p};
\end{equation}

in particular if \(p | m - s_0 \), then

\[pB_m^{(p)}(u) \equiv -u^{s_0}. \]

However, if \(s_0 = 0 \), then

\begin{equation}
pB_m^{(p)}(u) \equiv (m)_p \left(\frac{1}{m} + \frac{u^{p-1} - 1}{m - p + 1} \right) \pmod{p};
\end{equation}

in particular if \(p | m \), then \(pB_m^{(p)}(u) \equiv -1 \), if \(p | m+1 \), then \(pB_m^{(p)}(u) \equiv 1 - u^{p-1} \).

For references in the case \(k = 1 \), see [1, Chap. 1; 2; 3; 4, Chap. 14; 6]. Vandiver [6] has also discussed the case \(k = 2 \); indeed his numbers of the second order are somewhat more general.

\textbf{2. Proof of Theorem 1.} Let \(\eta(x) \) denote a (formal) power series of the type

\begin{equation}
1 + \sum_{1}^{\infty} c_m(x^m - 1)^m,
\end{equation}

where the \(c_m \) are integral (mod \(p \)). Put

\begin{equation}
g(x) = \left(\frac{x}{e^x - 1} \right)^k \eta(x).
\end{equation}

If for brevity we define \(\delta g(x) \) recursively by means of

\[\delta g(x) = g(ax) - g(x), \quad \delta^{r+1} g(x) = \delta^r g(ax) - a^r \delta^r g(x), \]
then in the first place, we have
\[
\delta g(x) = \left(\frac{a x}{e^{ax} - 1} \right)^k \eta(ax) - \left(\frac{x}{e^x - 1} \right)^k \eta(x) = \frac{x^k}{(e^x - 1)^{k-1}} \eta_1(x),
\]
as is easily verified; here \(\eta_1(x) \) represents a series of the form (2.1).

At the next step we find
\[
\delta^2 g(x) = \frac{a^k x^k}{(e^{ax} - 1)^{k-1}} \eta_1(ax) - \frac{a x^k}{(e^x - 1)^{k-1}} \eta_1(x)
\]
\[
= \frac{x^k}{(e^x - 1)^{k-2}} \eta_2(x),
\]
where \(\eta_2(x) \) is also of the form (2.1). Continuing in this way, we finally get
\[
(2.3) \quad \delta^k g(x) = x^k \eta_k(x),
\]
where of course \(\eta_k(x) \) is of the form (2.1). Now let \(\eta(x) = e^{ax} \) in (2.2); then it is clear from (1.1) that
\[
(2.4) \quad \frac{\delta^k g(x)}{x^k} = \sum_{m=k}^{\infty} \frac{[m]_k B_m^{(k)}(u)}{(m)_k} \frac{x^{m-k}}{(m-k)!} = \sum_{m=0}^{\infty} U_m^{(k)} \frac{x^m}{m!}.
\]
Now on the other hand it follows immediately from (2.1) that
\[
\eta(x) = \eta_k(x) = \sum_{n=0}^{\infty} b_n x^n / n!,
\]
where the \(b_n \) are integral (mod \(p \)). Comparison with (2.3) and (2.4) yields the theorem.

3. Proof of Theorems 2 and 3. Suppose now that \(a \) is a primitive root (mod \(p \)); then it is clear from the hypothesis of Theorem 2 that none of the factors \(a^{k-i} - 1, i = 0, 1, \ldots, k-1 \), is divisible by \(p \). Consequently \([m]_k \) is prime to \(p \) and thus Theorem 1 implies Theorem 2.

In the next place, let \(p \mid [m]_k \). Since, as we have just seen, \(p \nmid [m]_k \), it follows from (1.3) that \(B_m^{(k)}(u) \equiv 0 \) (mod \(p^r \)). Hence Theorem 3 follows.

4. Proof of Theorem 4. We note first that for \(\eta(x) \) as defined by (2.1), we have
\[
\eta(x) = 1 + \sum_{t=1}^{\infty} c_t \sum_{s=0}^{t} (-1)^{t-s} \binom{t}{s} \sum_{m=0}^{\infty} \frac{s^m x^m}{m!}.
\]
Hence if we put
\[\eta(x) = 1 + \sum_{m=1}^{\infty} d_m x^m / m! , \]
it follows that
\[
(4.1) \quad d_m = \sum_{t=1}^{n} c_t \sum_{s=0}^{t} (-1)^{t-s} \binom{t}{s} s^m \quad (n \geq m),
\]
since the inner sum in the right member of (4.1) vanishes for \(n > m \).
Then clearly
\[
\sum_{j=0}^{r} (-1)^{r-i} \binom{r}{j} d_{m+jb} = \sum_{t=1}^{\infty} c_t \sum_{s=0}^{t} (-1)^{t-s} \binom{t}{s-1} s^m,
\]
where of course the outer sum in the right member is finite. It follows at once that
\[
(4.2) \quad \sum_{j=0}^{r} (-1)^{r-i} \binom{r}{j} d_{m+jb} \equiv 0 \pmod{p^r}
\]
provided \(m \geq rb \).

Turning now to \(U_m^{(k)} \), we get from (2.3) and (2.4) that \(\delta^k g(x)/x^k \)
is of the form \(\eta(x) \) and that the general term in the expansion is of the form \(U_m^{(k)} x^m / m! \) \((m \geq 0)\). Thus we may take \(d_m = U_m^{(k)} \), and (4.1) and (4.2) apply. In particular (4.2) implies
\[
(4.3) \quad \sum_{j=0}^{r} (-1)^{r-i} \binom{r}{j} U_{m+jb}^{(k)} \equiv 0 \pmod{p^r}
\]
provided \(m \geq rb \). If we replace \(m+k \) by \(m \), it is clear that Theorem 4 holds.

5. Proof of Theorem 5. If we substitute from (1.3) in (4.3), we get
\[
(5.1) \quad \sum_{j=0}^{r} (-1)^{r-i} \binom{r}{j} \frac{[m+jb]_k B_{m+jb}(u)}{(m+jb)_k} \equiv 0 \pmod{p^r}
\]
provided \(m \geq rb+k \). Suppose now that \(a \) is a primitive root \(\pmod{p} \)
such that \(a^{p-1} = 1 \pmod{p^r} \) for an arbitrarily assigned \(w \). By Theorem 2 we know that \(B_{m+jb}(u)/(m+jb)_k \) is integral. Hence it suffices to take \(w = re \), so that
\[
[m+jb]_k \equiv [m]_k \pmod{p^r} \quad (j = 0, 1, \ldots, r).
\]
Thus the left member of (5.1) is congruent to
\[[m]_k \sum_{j=0}^{r} (-1)^{r-j} \binom{r}{j} B_{m+jb}^{(k)}(u)/(m+jb)_k \pmod{p^r}. \]

Since \(p \nmid [m]_k \), (1.6) follows immediately.

6. Proof of Theorem 6. We make use of a device employed by Nielsen [2, Chap. 14]. Let

\[A_{r,q} = \sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} \binom{m+sb}{q} T_{m+sb}^{(k)} \]

so that \(A_{r,0} \) denotes the left member of (1.6) and \(A_{r,k} \) the left member of (1.7). We require the recursion

\[(m+rb-q)A_{r,q} + rbA_{r-1,q} = (q+1)A_{r,q+1}, \]

which is easily verified by substituting from (6.1). Now by the last theorem \(A_{r,0} \equiv 0 \pmod{p^r} \); hence repeated application of (6.2) leads to

\[A_{r,q} \equiv 0 \pmod{p^{(r-q)}} \]

provided \(q \leq r \), \(q < p \). In particular if we take \(q = k \) in (6.3), Theorem 6 follows at once.

7. Proof of Theorems 7 and 8. We shall require the following formula [5, p. 148, (87)]:

\[B_{m}^{(k)}(u) = k \sum_{s=0}^{k-1} \binom{k-1-s}{s} \frac{B_{m-s}(u)}{m-s} \]

where \(B_{m}(u) = B_{m}^{(1)}(u) \); we also need

\[pB_{m}(u) = \begin{cases} -1 \pmod{p} & (p - 1 \mid m), \\ 0 \pmod{p} & (p - 1 \nmid m). \end{cases} \]

Now let \(m \equiv s_0 \pmod{p-1} \), where \(0 \leq s_0 \leq k-1 \). Since for \(s < k \)

\[B_{s}^{(k)}(u) = \frac{s!}{(k-1)!} \left(\frac{d^s}{du^s} \right)^{k-s} (u-1)(u-2) \cdots (u-k+1), \]

it is clear that \(B_{s}^{(k)}(u) \) is integral \(\pmod{p} \). Thus if we apply (7.2) to the right member of (7.1), we get

\[pB_{m}^{(k)} = (-1)^{k-s_0} k \binom{m}{k} \binom{k-1}{s_0} \frac{B_{s_0}(u)}{m-s_0} \pmod{p}, \]

which is the same as (1.8).
To prove Theorem 8, we again use (7.1). Then for \(k = p, s_0 \neq 0 \), it is clear that (7.1) and (7.2) imply

\[
pB_m^{(p)}(u) = (-1)^{m+1} \frac{(m)_p}{(p-1)!} \left(\frac{p-1}{s_0} \right) B_{s_0}^{(p)} (\text{mod } p).
\]

Now

\[
\left(\frac{p-1}{s} \right) = (-1)^s
\]

and by (7.3)

\[
B_s^{(p)}(u) = \frac{s!}{(p-1)!} \left(\frac{d}{du} \right)^{p-1-s} (u^{p-1} - 1) \equiv u^s \quad (s \leq p - 1).
\]

Thus

\[
pB_m^{(p)}(u) = \frac{(m)_p}{m - s_0} u^{s_0} \quad (\text{mod } p),
\]

which is identical with (1.9).

As for the case \(s_0 = 0 \), the only difference is that there are now two terms in (7.1) to consider, namely, those corresponding to \(s = 0, s = p - 1 \). Thus

\[
(7.4) \quad pB_m^{(p)}(u) = -\frac{(m)_p}{(p-1)!} \left(\frac{1}{m} + \frac{1}{m - p + 1} \right) B_{p-1}^{(p)}(u);
\]

but by (7.3)

\[
B_{p-1}^{(p)}(u) = (u - 1)(u - 2) \cdots (u - p + 1) \equiv u^{p-1} - 1.
\]

Substitution in (7.4) yields (1.10).

References

Duke University