A CLASS OF MULTIVALENT FUNCTIONS
WITH ASSIGNED ZEROS

TOSHIO UMEZAWA

1. Introduction. Recently A. W. Goodman [1; 2] has studied the following two classes of multivalent functions:

(i) \(p \)-valently starlike functions denoted by \(S(p) \): A function \(f(z) \) is said to be \(p \)-valently starlike with respect to the origin for \(|z| < 1 \) if (a) \(f(z) \) is regular and \(p \)-valent for \(|z| < 1 \) and (b) if there exists a \(p \) such that, for each \(r \) in \(\rho < r < 1 \), the radius vector joining the origin to \(f(re^{i\theta}) \) turns continuously in the counterclockwise direction and makes \(p \) complete revolutions as \(\theta \) varies from 0 to \(2\pi \).

(ii) Typically-real functions of order \(p \) denoted by \(T(p) \). A function

\[
f(z) = \sum_{n=0}^{\infty} b_n z^n
\]

is said to be typically-real of order \(p \) if in (1.1) the coefficients \(b_n \) are all real and if \(f(z) \) is regular in \(|z| \leq 1 \) and \(\Im(f(e^{i\theta})) \) changes sign \(2p \) times as \(\theta \) traverses the boundary of the unit circle.

Concerning the above classes of functions he obtained the following results:

Let

\[
f(z) = z^q + \sum_{n=q+1}^{\infty} a_n z^n
\]

be a function of the set \(S(p) \) or \(T(p) \). Suppose that in addition to the \(q \)th order zero at \(z=0 \), the function \(f(z) \) has exactly \(p-q \) zeros, \(\beta_1, \beta_2, \ldots, \beta_{p-q} \), such that \(0 < |\beta_j| < 1, j = 1, 2, \ldots, p-q \). Then

\[
|a_n| \leq A_n, \quad n = q + 1, q + 2, \ldots
\]

where \(A_n \) is defined by

\[
F(z) = \frac{z^q}{(1-z)^{2p}} \prod_{j=1}^{p-q} \left(1 + \frac{z}{|\beta_j|} \right) (1 + z |\beta_j|)
\]

\[
= z^q + \sum_{n=q+1}^{\infty} A_n z^n.
\]

The inequality (1.3) is sharp.

Received by the editors January 30, 1952.

813
For functions of the set $T(p)$ he has obtained a more general result [2; 3]. However even that result cannot include the above result for $S(p)$ since in $S(p)$ the coefficients can be complex.

Now in the present paper we shall introduce a wider class of functions $D(p)$ which includes $S(p)$, $T(p)$ and others in the case where $f(z)$ has p zeros, proving that the inequality (1.3) is also valid for the functions of this class.

2. Preliminary considerations.

Lemma 1. Let

\[w = f(z) = \sum_{n=0}^{\infty} a_n z^n \]

be regular for $|z| \leq 1$ and have p (≥ 0) zeros in $|z| \leq 1$. Then there exists a point ζ (|\zeta| = 1) for which the following equality holds

\[\arg f(-\zeta) = \arg f(\zeta) + p\pi. \]

Proof. Without loss of generality, let $\arg f(-1) - \arg f(+1) < p\pi$. If a point ζ moves from $+1$ to -1, $\arg f(-\zeta) - \arg f(\zeta)$ varies continuously from $\arg f(-1) - \arg f(+1) < p\pi$ to $2p\pi - (\arg f(-1) - \arg f(+1)) > p\pi$, since $f(z)$ has p zeros. Hence at a point ζ the equality (2.2) holds.

The special cases of Lemma 1 and the following Definition 1 we owe to N. G. DeBruijn [4] and S. Ozaki [5].

Definition 1. Let us say the diametral line of $f(z)$ for the straight line $[f(\zeta)f(-\zeta)]$ when ζ satisfies Lemma 1.

Accordingly we have the following:

Lemma 1'. Let (2.1) be a function regular for $|z| \leq 1$. Then there exists at least one diametral line of $f(z)$ in the w-plane.

Definition 2. Let $f(z)$ be regular for $|z| \leq 1$ and let C be the image curve of $|z| = 1$. If C is cut by a straight line passing through the origin in $2p$, and not more than $2p$ points, then $f(z)$ is said to be starlike of order p in the direction of the straight line. Especially when the direction of starlikeness of order p is that of the diametral line of $f(z)$, $f(z)$ is said to belong to the class $D(p)$.

The idea of being starlike in one direction was introduced by M. S. Robertson [6] and also extended to general p by him [7; 8]. And $D(1)$ was studied in [4; 5].

Lemma 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a member of the class $D(p)$. Further let $f(z)$ have s zeros $\beta_1, \beta_2, \cdots, \beta_s$ such that $0 < |\beta_j| < 1$, $j = 1, 2, \cdots, s$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Then the function $F(z)$ defined by
\[F(z) = f(z)g(z), \quad g(z) = z^p \prod_{i=1}^{q} (z - \beta_i)(1 - \bar{\beta}_i z) \]
is also a member of the class $D(p)$.

Proof. Regularity of $F(z)$ in $|z| \leq 1$ is evident. Now we easily see that
\[g(e^{i\theta}) = \prod_{i=1}^{q} |e^{i\theta} - \beta_i|^2. \]
Hence \[\arg F(e^{i\theta}) = \arg f(e^{i\theta}) \] for every θ. Consequently if $f(z) \in D(p)$, then $F(z) \in D(p)$.

3. **The main theorem.**

Theorem 1. Let
\(f(z) = z^q + \sum_{n=q+1}^{\infty} a_n z^n \)
be a function of the set $D(p)$. Suppose that in addition to the qth order zero at $z = 0$, the function $f(z)$ has exactly $p - q$ zeros, $\beta_1, \beta_2, \ldots, \beta_{p-q}$, such that $0 < |\beta_i| < 1$, $j = 1, 2, \ldots, p-q$. Then
\begin{align*}
(3.2) \quad |a_n| &\leq B_n, \quad n = q + 1, q + 2, \ldots, \\
(3.3) \quad |f(re^{i\theta})| &\leq F(r) \quad \text{for } r < 1,
\end{align*}
where B_n and $F(r)$ are defined by
\begin{align*}
F(z) &= \frac{z^q}{(1 - z)^{p-q}} \prod_{i=1}^{p-q} \left(1 + \frac{z}{|\beta_i|}(1 + z|\beta_i|)\right) \\
&= z^q + \sum_{n=q+1}^{\infty} B_n z^n.
\end{align*}

Proof. Let us put
\(E(z) = f(z) \cdot z^{p-q} / \prod_{i=1}^{q} (z - \beta_i)(1 - \bar{\beta}_i z). \)
Then by Lemma 2, $E(z) \in D(p)$ since $f(z) \in D(p)$, and
\begin{align*}
(-1)^{p-q} \prod_{i=1}^{q} \beta_i E(z) &= z^p + \alpha_{p+1} z^{p+1} + \cdots \\
&= \psi(z) \in D(p).
\end{align*}
We wish now to show that
\[\psi(z) \ll z^p/(1 - z)^{2p}. \]

For the purpose it will be sufficient to assume that the diametral line in whose direction \(\psi(z) \) is starlike of order \(p \) is \(\psi(1) \equiv \psi(-1) \), since in the other cases we may consider \(\psi(\zeta z) = g(z) \) for which \(g(1) \equiv g(-1) \) is the diametral line.

Let \(\psi(1) = \omega = |\omega|e^{-ia} \); then by our hypothesis
\[\Im e^{ia}\psi(e^{i\theta}) > 0 \quad \text{for} \quad \theta_{2s-1} < \theta < \theta_{2s}, \]
\[\Im e^{ia}\psi(e^{i\theta}) < 0 \quad \text{for} \quad \theta_{2p} < \theta < \theta_{2p+1}, \]
\[s = 1, 2, \ldots, p, \quad \theta_{2p+1} = \theta_1 + 2\pi, \quad \theta_1 = 0, \quad \theta_j = \pi, \quad 1 < j \leq 2p. \]

Let
\[\phi(z) = (-1)^{p-1}\exp\left(-\frac{i}{2} \sum_{s=1}^{2p} \theta_s \right) \prod_{s=1}^{2p} \frac{e^{i\theta_s} - z}{z^p}, \]
then
\[\phi(e^{i\theta}) = -2^{2p} \prod_{s=1}^{2p} \sin \frac{\theta_s - \theta}{2}. \]
Hence we obtain
\[\phi(e^{i\theta}) > 0 \quad \text{for} \quad \theta_{2s-1} < \theta < \theta_{2s}, \]
\[\phi(e^{i\theta}) < 0 \quad \text{for} \quad \theta_{2s} < \theta < \theta_{2s+1}, \]
\[s = 1, 2, \ldots, p. \]

Let
\[G(z) = -ie^{ia}\psi(z)\phi(z) = e^{i\theta} + \sum_{n=1}^{\infty} \gamma_n z^n, \]
then \(G(z) \) is regular for \(|z| \leq 1 \) and
\[\Re G(e^{i\theta}) \geq 0. \]
Accordingly by the principle of minimum for regular harmonic functions
\[\Re G(z) > 0 \quad \text{for} \quad |z| < 1. \]
Hence by Carathéodory’s theorem
\[|\gamma_n| \leq 2\Re e^{i\theta} \leq 2 \quad \text{for} \quad n = 1, 2, \ldots. \]
Consequently
\[G(z) \ll (1 + z)/(1 - z). \]
On the other hand from (3.11) we have
\[\psi(z) = ie^{-i\alpha}(-1)^p \exp \left(\frac{i}{2} \sum_{s=1}^{2p} \theta_s \right) \cdot z^p G(z) / \left\{ (1 - z^2) \prod_{s=1, i}^{2p} (e^{i\theta_s} - z) \right\} \]
which is dominated by
\[z^p \left(\frac{1 + z}{1 - z} \right) \cdot \frac{1}{1 - z^2} \cdot \frac{1}{(1 - z)^{2p - 2}} = \frac{z^p}{(1 - z)^{3p}} \]
since we have (3.12).

From (3.4) and (3.5), we have
\[f(z) = \psi(z) \prod_{i=1}^{p-q} (z - \beta_i)(1 - \bar{\beta}_i z) / \left(\prod_{i=1}^{p-q} \beta_i z^{p-q} \right) \]
which is dominated by
\[z^p \prod_{i=1}^{p-q} \left(1 + \left| \frac{z}{\beta_i} \right| \right) \left(1 + \left| \beta_i \right| z \right) \cdot \frac{1}{z^{p-q}} = F(z) \]
since we have (3.13). Hence we obtain
\[\left| a_n \right| \leq B_n, \quad n = q + 1, q + 2, \ldots, \]
and
\[\left| f(re^{i\theta}) \right| \leq F(r) \quad \text{for } r < 1. \quad \text{q.e.d.} \]

4. A class of functions related to $D(p)$.

Definition 3. Let $w = f(z)$ be regular for $|z| \leq 1$ and C be the image curve of $|z| = 1$. Let, further, P be the orthogonal projection of $f(e^{i\theta})$ onto a straight line. Then P will move on the straight line both positively or negatively when θ varies from 0 to 2π. If P changes its direction of movement $2p$ times when θ varies from 0 to 2π, then $f(z)$ is said to be convex of order p in the direction which is perpendicular to the straight line. This class of functions has recently been studied by M. S. Robertson [9].

Especially if, when we represent $f(z)$, $zf'(z)$ in the same plane, the straight line is parallel to a diametral line of $zf'(z)$, then $f(z)$ is said to be a member of $F(p)$.

Lemma 3. $f(z)$ is a member of the class $F(p)$ if and only if $zf'(z)$ belongs to the class $D(p)$.
PROOF. This is a generalization of M. S. Robertson’s lemma [6].

It is sufficient to prove the lemma in the case where the diametral line of \(f(z) \) is the real axis, since in the other cases we may consider \(e^{i\alpha f(z)} \) with a suitable choice for the real parameter \(\alpha \).

Using the identity
\[
\Im \{z f'(z)\} = - \partial \Re f(z)/\partial \theta \quad \text{for } |z| = 1
\]
we see, under the hypothesis,
\[
\begin{align*}
\Im \{z f'(z)\} &= - \partial \Re (e^{i\theta})/\partial \theta > 0 \quad \text{for } \theta_{2s-1} < \theta < \theta_{2s}, \\
\Im \{z f'(z)\} &= - \partial \Re (e^{i\theta})/\partial \theta < 0 \quad \text{for } \theta_{2s} < \theta < \theta_{2s+1},
\end{align*}
\]
with \(s = 1, 2, \ldots, \rho, \theta_i = \theta_1 + \pi, \theta_{2\rho+1} = \theta_1 + 2\pi \).

Hence \(f(z) \in F(p) \) if and only if \(z f'(z) \in D(p) \).

Theorem 2. Let
\[
(4.1) \quad f(z) = z^q + \sum_{n=q+1}^{\infty} a_n z^n
\]
be a function of the set \(F(p) \). Suppose that in addition to the \((q-1) \)th order critical points at \(z = 0 \), the function \(f(z) \) has exactly \(p-q \) critical points \(\alpha_1, \alpha_2, \ldots, \alpha_{p-q} \) such that \(0 < |\alpha_j| < 1, j = 1, 2, \ldots, p-q \). Then
\[
(4.2) \quad |a_n| \leq q C_n/n, \quad n = q + 1, q + 2, \ldots,
\]
\[
(4.3) \quad |f(re^{i\theta})| \leq q \int_0^r \frac{F(r)}{r} \, dr \quad \text{for } r < 1,
\]
\[
(4.4) \quad |f'(re^{i\theta})| \leq q F(r)/r, \quad \text{for } r < 1,
\]
where \(C_n \) and \(F(r) \) are defined by
\[
F(z) = \frac{z^q}{(1 - z)^{2p}} \prod_{j=1}^{p} \left(1 + \frac{z}{|\beta_j|} \right) \left(1 + z |\beta_j| \right) \quad \text{for } z \in D(p)
\]
\[
(4.5) \quad f(z) = z^q + \sum_{n=q+1}^{\infty} C_n z^n.
\]

Proof. Since \(f(z) \in F(p) \),
\[
\frac{1}{q} z f'(z) = z^q + \sum_{n=q+1}^{\infty} n a_n z^n \in D(p)
\]
by Lemma 3.

By using the main theorem we have (4.2) and (4.4). By integrating \(f'(z) \) along a radius we have, for \(z = re^{i\theta} \),
\[|f(re^{\theta})| = \left| \int_0^r f'(z)dz \right| \leq \int_0^r |f'(re^{\theta})| dr \leq q \int_0^r \frac{F(r)}{r} dr \]

for \(r < 1 \),

which completes the proof.

5. Subclasses of \(D(p) \) and \(F(p) \).

Corollary 1. Let \(f(z) \) in the form (3.1) be regular for \(|z| \leq 1 \) and assigned with the same zeros as in Theorem 1. Suppose that \(f(z) \) satisfies one of the following conditions:

(i) \(\Re\left[zf'(z)/f(z)\right] > 0 \) for \(|z| = 1 \),

(ii) \(f(1) = \text{real}, \ f(-1) = \text{real} \) and \(\Im f(e^{\theta}) \) changes sign \(2p \) times on \(\theta = 1 \),

(iii) \(f(z) \in T(p) \).

Then (3.2) and (3.3) hold.

Proof. (i) Since there exists at least one diametral line of \(f(z) \) by Lemma 1', and since \(f(z) \) is starlike of order \(p \) in every direction by the fact that \(\Re\left[zf'(z)/f(z)\right] > 0 \) on \(|z| = 1 \) and \(f(z) \) has \(p \) zeros in \(|z| < 1 \), \(f(z) \) is evidently starlike of order \(p \) in the direction of the above diametral line.

(ii) In this case the diametral line of \(f(z) \) is evidently the real axis and is starlike of order \(p \) in this direction by our hypothesis, which proves the corollary by using the main theorem.

(iii) This is a direct consequence of the preceding (ii).

Corollary 2. Let \(f(z) \) in the form (4.1) be regular for \(|z| \leq 1 \) and assigned with the same critical points as in Theorem 2. Suppose that \(f(z) \) satisfies one of the following conditions:

(i) \(1 + \Re\left[zf''(z)/f'(z)\right] > 0 \) for \(|z| = 1 \).

(ii) \(f'(1) = \text{real}, \ f'(-1) = \text{real}, \) and \(f(z) \) is convex of order \(p \) in the direction of the imaginary axis.

(iii) In (4.1) the coefficients are all real and \(f(z) \) is convex of order \(p \) in the direction of the imaginary axis.

Then (4.2), (4.3), and (4.4) hold.

Proof. (i) By our hypothesis \(zf'(z) \) has \(p \) zeros in \(|z| < 1 \) and \(\Re\left[z\{zf''(z)\}'/\{zf'(z)\}\right] > 0 \) on \(|z| = 1 \). Hence \(zf'(z) \) is starlike of order \(p \) in every direction. Consequently \(zf'(z) \in D(p) \) by Corollary 1 adopting (i). Accordingly \(f(z) \in F(p) \) by Lemma 3.

(ii) By our hypothesis \(-\partial\Re f(z)/\partial \theta \) changes sign \(2p \) times on \(|z| = 1 \). Accordingly \(\Im\left\{zf'(z)\right\} \) changes sign \(2p \) times on \(|z| = 1 \) by
Lemma 3. And \(f'(1) = \text{real} \), \((-1)f'(-1) = \text{real} \). Hence \(zf''(z) \in D(p) \).
Consequently \(f(z) \in F(p) \).

(iii) This is a special case of (ii).

REFERENCES

GUMMA UNIVERSITY, MAEBASHI, JAPAN