A GENERALIZATION OF A THEOREM
BY HARDY AND LITTLEWOOD

A. C. ALLEN

1. Suppose that \(\phi(x) \) is non-negative and integrable in \((0, 1)\), so
that it is measurable and finite almost everywhere. If \(M(y) \) is the
measure of the set in which \(\phi(x) \geq y \), \(M(y) \) is a decreasing function of
\(y \). The inverse \(\phi \) of \(M \) is defined by

\[
\phi(M(y)) = y,
\]

and \(\phi(x) \) is a decreasing function of \(x \) defined uniquely in \((0, 1)\)
except for at most an enumerable set of values of \(x \), viz., those cor-
responding to intervals of constancy of \(M(y) \). We may complete the
definition of \(\phi(x) \) by agreeing, for example, that

\[
\phi(x) = \frac{\phi(x - 0) + \phi(x + 0)}{2}
\]
at a point of discontinuity.

We call \(\phi(x) \) the rearrangement of \(\phi(x) \) in decreasing order.

2. The following theorem which is important for its function-
theoretic applications is due to Hardy and Littlewood [1]. The
theorem may be stated in two equivalent forms.

Theorem A. Suppose that \(f(x) \) is non-negative and integrable in
\((0, 1)\), that

\[
\Theta(x) = \Theta(x, f) = \max_{0 \leq t < x} \frac{1}{x - t} \int_t^x f(t)dt.
\]

Then

\[
\bar{\Theta}(x) \leq \frac{1}{x} \int_0^x \bar{f}(t)dt
\]

for \(0 < x \leq 1 \).

Theorem B. Suppose that \(f(x) \) satisfies the conditions of Theorem A,
and that \(s(y) \) is any increasing function of \(y \) defined for \(y \geq 0 \). Then

\[
\int_0^1 s\{\Theta(x)\}dx \leq \int_0^1 s\left\{\frac{1}{x} \int_0^x \bar{f}(t)dt\right\}dx.
\]

In this note I generalize the definition of \(\Theta(x) \), and prove theorems
analogous to those above.

Received by the editors January 11, 1952.

727
3. Suppose that \(k(t) \) is a non-negative, decreasing function of \(t \),
 defined and integrable in \((0, 1)\).

Theorem 1. Suppose that \(f(x) \) is non-negative and integrable in
 \((0, 1)\), that \(k(t) \) satisfies the conditions of the last paragraph,
 that \(k(t)f(t) \) is integrable in \((0, 1)\), and that

\[
(1) \quad \Theta(x) = \Theta(x, f) = \max_{0 < h \leq x} \frac{1}{h} \int_0^h k \left(\frac{t}{h} \right) f(x - h + t) dt.
\]

Then

\[
\Theta(x) \leq \frac{1}{x} \int_0^x k \left(\frac{t}{x} \right) \tilde{f}(t) dt
\]

for \(0 < x \leq 1 \).

Theorem 2. Suppose that \(f(x) \) satisfies the conditions of Theorem 1,
 and that \(s(y) \) is any increasing function of \(y \) defined for \(y \geq 0 \). Then

\[
\int_0^1 s\{\Theta(x)\} dx \leq \int_0^1 s \left\{ \frac{1}{x} \int_0^x k \left(\frac{t}{x} \right) \tilde{f}(t) dt \right\} dx.
\]

The equivalence of Theorems 1 and 2 may be proved in the same
 way as is used to prove the equivalence of Theorems A and B
 \([2, 10.18]\).

It is easily seen that Theorems A and B are the particular case of
 Theorems 1 and 2 where \(k(t) \) is the kernel of the first Cesaro mean,
 \((C, 1)\). The latter theorems will also deal with the case \((C, \delta),
 0 < \delta \leq 1\).

In this paper I prove Theorem 2, from which Theorem 1 may be
 deduced. Firstly, we shall prove Theorem 2 for the special case where

\[
(2) \quad s(t) = s_\alpha(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq \alpha, \\ 1 & \text{for } t > \alpha. \end{cases}
\]

In this case, if we rewrite Theorem 2, it is required to prove that

\[
(3) \quad m_{E_{0 \leq x \leq 1}} \left[x, \Theta(x) > \alpha \right] \leq m_{E_{0 \leq x \leq 1}} \left[x, \frac{1}{x} \int_0^x k \left(\frac{t}{x} \right) \tilde{f}(t) dt > \alpha \right].
\]

We require the following lemmas:

Lemma 1. Suppose that each point of a set in \((a, b)\) is the right-hand
 end point of one or more intervals \((x - h, x)\) of a family \(H \). Then there
 is a finite nonoverlapping set \(S \) of intervals of \(H \) which includes a subset
 \(E' \) of \(E \) such that \(m_{E'_{0 \leq x \leq 1}} > m_{E_{0 \leq x \leq 1}} - \varepsilon \).
This result is due to Sierpinski [3].

Lemma 2. If \(f(x) \) is non-negative and integrable in \((0, a+b)\), \(k(t) \) is a non-negative, decreasing function of \(t \) in \((0,1)\), \(k(t)f(t) \) is integrable, and if

\[
\frac{1}{a} \int_0^a k\left(\frac{t}{a}\right)f(t)dt > \alpha, \quad \frac{1}{b} \int_0^b k\left(\frac{t}{b}\right)f(t+a)dt > \alpha,
\]

then

\[
\frac{1}{a+b} \int_0^{a+b} k\left(\frac{t}{a+b}\right)f(t)dt > \alpha.
\]

Since \(k(t) \) is decreasing and integrable in \((0,1)\), it has a non-negative derivative almost everywhere. Also, writing

\[
F(x) = \int_0^x f(t)dt,
\]

and from (4), integrating by parts, we have

\[
k(1)F(a) + \int_0^1 k'(t)F(at)dt > a\alpha,
\]

\[
k(1)\{F(a+b) - F(a)\} + \int_0^1 k'(t)\{F(a + bt) - F(a)\} dt > b\alpha.
\]

Adding, we have

\[
k(1)F(a+b) + \int_0^1 k'(t)\{F(at) + F(a + bt) - F(a)\} dt > (a + b)\alpha.
\]

Similarly, we have

\[
\int_0^{a+b} k\left(\frac{t}{a+b}\right)f(t)dt
\]

\[
= k(1) \int_0^{a+b} f(t)dt + \int_0^1 k'(t) \left\{ \int_0^{(a+b)t} \tilde{f}(s)ds \right\} dt
\]

\[
= k(1)F(a+b) + \int_0^1 k'(t) \left\{ \int_0^{(a+b)t} \tilde{f}(s)ds \right\} dt.
\]

Now it is evident from the definition of \(\tilde{f}(t) \) that, when \(mE = (a+b)t \),

\[
\int_0^{(a+b)t} \tilde{f}(s)ds \geq \int_m^Ef(s)ds.
\]
Hence,

\[\int_0^{(a+b)t} \tilde{f}(s) ds \geq F(at) + F(a + bt) - F(a), \]

and, since almost everywhere \(k'(t) \geq 0 \), we have

\[\int_0^{a+b} k \left(\frac{t}{a+b} \right) \tilde{f}(t) dt \geq k(1)F(a + b) \]

\[+ \int_0^1 k'(t) \{ F(at) + F(a + bt) - F(a) \} dt > (a + b)\alpha, \]

from which the result follows.

4. We are now in a position to prove (3).

From the definition of \(\Theta(x) \) it is seen that to every point \(x \) of \(E \subset \mathbb{R}^1_+ \) there exists at least one interval \((x - h_x, x) \subset (0, 1) \) for which

\[\frac{1}{h_x} \int_0^{h_x} k \left(\frac{t}{h_x} \right) f(x - h_x + t) dt > \alpha. \]

Let us apply Lemma 1 to the set \(E \). Then there exists a finite set \(S \) of the above intervals which are nonoverlapping, which cover a subset \(E' \) of \(E \) such that \(mE' > mE - \epsilon \). It is evidently sufficient to prove (3) when we replace \(mE \) in the left-hand side by \(mE' \) for all \(\epsilon > 0 \), and, a fortiori, it is sufficient to prove that

\[mS \leq mE \left[x, \frac{1}{x} \int_0^x k \left(\frac{t}{x} \right) \tilde{f}(t) dt > \alpha \right]. \]

We further use the legitimate simplification that \(f(t) = 0 \) for \(t \) in the complement of \(S \), since this decreases the right-hand side of (6). This latter assumption permits us to translate the intervals of \(S \) to the left until they are end to end, and completely cover the interval \((0, mS) \), i.e., we have the \(n \) intervals \((j_r, j_{r+1}) \) with \(0 = j_0 < j_1 < \cdots < j_n = mS \).

Consider the two intervals \((j_{n-2}, j_{n-1}), (j_{n-1}, j_n) \).

We have

\[\frac{1}{j_n - j_{n-1}} \int_0^{j_n - j_{n-1}} k \left(\frac{t}{j_n - j_{n-1}} \right) f(t) dt > \alpha, \]

\[\frac{1}{j_{n-1} - j_{n-2}} \int_0^{j_{n-1} - j_{n-2}} k \left(\frac{t}{j_{n-1} - j_{n-2}} \right) f(t) dt > \alpha. \]
Let \(f_1(t) \) be the decreasing rearrangement of \(f(t) \) within the above two intervals. Then, applying Lemma 2, we have

\[
\frac{1}{j_n - j_{n-2}} \int_0^{j_n - j_{n-2}} k\left(\frac{t}{j_n - j_{n-2}}\right) f_1(t) dt > \alpha.
\]

We have thus reduced the case from \(n \) intervals to \((n-1)\) intervals. Repeating the process a further \((n-2)\) times we arrive at \(\bar{f}(t) \) defined in the single interval \((0, mS)\), and have

\[
\frac{1}{mS} \int_0^{mS} k\left(\frac{t}{mS}\right) \bar{f}(t) dt > \alpha
\]

which proves (6).

Thus we have proved the theorem for the special case (2).

5. Since \(s(t) \) is an increasing function of \(t \), we may approximate to it uniformly in any finite interval \((0, N)\) by the sum of a finite number of functions of the type \(s_a(t) \). The deduction of Theorem 2 from the special case considered above is apparent.

The author is indebted to the Commonwealth Fund of New York for a Commonwealth Fellowship.

Bibliography

Princeton University