A THEOREM ABOUT FRACTIONAL INTEGRALS

NICOLAAS DU PLESSIS

It is a classical result that if $f(x)$ is Lebesgue integrable in a finite interval, then it is finite p.p. One is led to enquire about the behaviour of the fractional integral f_β of f.

Suppose, for convenience, that $f(x)$ is defined in $[0, 2\pi]$. We then have the following theorem.

Theorem. If $f \in L^q[0, 2\pi]$, then:

(a) For $0 < \alpha < 1$, $2 < q < \infty$, $f_{\alpha/q}$ is finite everywhere except in a set which is of zero β-capacity for every $\beta > 1 - \alpha$.

(b) For $0 < \alpha < 1$, $1 \leq q \leq 2$, $f_{\alpha/q}$ is finite everywhere except possibly in a set of zero $(1 - \alpha)$-capacity.

Both (a) and (b) are best possible.

Since, as is well known, the Riemann-Liouville and the Weyl versions of the fractional integral of a function in L^q differ by a bounded function, this theorem holds for both versions if it is shown to hold for either one. Use is made of this fact in what follows.

1. In this section I prove a lemma which is possibly of greater interest than the theorem itself.

Lemma. Let $\mu(x)$ be a nondecreasing bounded function in $[0, 2\pi]$. Let, for $0 < \alpha < 1$,

$$V_{1-\alpha} = \sup \int_0^{2\pi} |x - t|^\alpha \mu(t) \text{ for } x \in [0, 2\pi].$$

Then, for every $\epsilon > 0$ and $1 < q < 2$,

$$M_{q-\epsilon} \left[\int_0^{2\pi} |x - t|^{\alpha/q' - 1} \mu(t) \right] \leq A(\alpha, \epsilon) V_{1-\alpha},$$

where $A(\alpha, \epsilon)$ is a constant depending only on α and ϵ, and, for $2 \leq q \leq \infty$,

$$M_q \left[\int_0^{2\pi} |x - t|^{\alpha/q - 1} \mu(t) \right] \leq A(\alpha) V_{1-\alpha},$$

where $A(\alpha)$ is a constant depending only on α.

Received by the editors February 26, 1952.

892
A THEOREM ABOUT FRACTIONAL INTEGRALS

\[\int_0^{2\pi} |x - t|^{\alpha/q' - 1} d\mu(t) = \int_0^{2\pi} |x - t|^{-a/q} dv_x(t), \]

where

\[v_x(t) = \int_0^t |x - s|^{\alpha - 1} d\mu(s). \]

Consequently, using Hölder's inequality,

\[\left\{ \int_0^{2\pi} |x - t|^{\alpha/q' - 1} d\mu(t) \right\}^{q - t} \leq \left\{ \int_0^{2\pi} |x - t|^{-a(q-1)/q} dv_x(t) \right\} \left\{ \int_0^{2\pi} dv_x(t) \right\}^{(q-1)/(q-1)'} \]

and this does not exceed

\[\left\{ \int_0^{2\pi} |x - t|^{a/q - 1} d\mu(t) \right\} V^{(q-1)/(q-1)'}_{\beta - a}. \]

Thus, the left-hand side of (1) does not exceed

\[V^{1/(q-1)'} \left\{ \int_0^{2\pi} d\mu(t) \int_0^{2\pi} |x - t|^{a/q - 1} dx \right\}^{1/(q-1)}, \]

which gives (1). It is surprising that so crude an argument gives a best possible result.

To prove (2) I first show the result true for \(q = 2 \) and then that this implies its truth for \(q > 2 \). For this latter portion of the proof I am indebted to Professor J. E. Littlewood.

We have first, inverting the order of integration,

\[M^2 \left[\int_0^{2\pi} |x - t|^{a/2 - 1} d\mu(t) \right] \]

(3)

\[= \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} |x - t|^{a/2 - 1} |x - s|^{a/2 - 1} d\mu(t) d\mu(s). \]

In the inner integral we make the substitution \(x - t = (s - t)u \) and find that the integral does not exceed

\[|s - t|^{a-1} \int_{-\infty}^{\infty} |u(1 - u)|^{a/2 - 1} du = B(\alpha) |s - t|^{a-1}. \]

Consequently, the right-hand side of (3) is dominated by
which gives the result for \(q = 2 \).

For \(q > 2 \), we have

\[
M_q^2 \left[\int_0^{2\pi} \left| x - t \right|^{a/q - 1} d\mu(t) \right]^{\frac{q}{2}} = \int_0^{2\pi} dx \left\{ \int_0^{2\pi} \left| x - t \right|^{(a-2)/(q-1)} | x - t |^{(a-q)/q} d\mu(t) \right\}^q
\]

and this, by Hölder's inequality, does not exceed

\[
\int_0^{2\pi} dx \left\{ \int_0^{2\pi} \left| x - t \right|^{a - 1} d\mu(t) \right\} \int_0^{2\pi} dx \left\{ \int_0^{2\pi} \left| x - t \right|^{a - 1} d\mu(t) \right\}^q,
\]

which is, in turn, dominated by

\[
V_{1-a}^q M_q^2 \left[\int_0^{2\pi} \left| x - t \right|^{a/2 - 1} d\mu(t) \right] \leq A(\alpha) V_{1-a}^{q-1},
\]

which gives the result for \(q > 2 \).

2. Proof of the theorem. Suppose that \(E \) is a subset of \([0, 2\pi]\).

If a nondecreasing \(\mu(x) \) is such that

\[
\int_E d\mu(t) = \int_0^{2\pi} d\mu(t) = 1,
\]

we say that \(\mu(x) \) is a distribution concentrated on \(E \). If, further, for any \(\beta \) \((0 < \beta < 1)\) there is a \(\mu(x) \) concentrated on \(E \) such that

\[
V_{\beta} = \sup \int_0^{2\pi} \left| x - t \right|^{-\beta} d\mu(t) \quad \text{for all } x \in [0, 2\pi]
\]

is finite, then \(E \) is said to be of positive \(\beta \)-capacity. Otherwise \(E \) is said to be of zero \(\beta \)-capacity. This definition is equivalent to that given by Salem and Zygmund \([1]\).

Clearly, if \(E \) is of positive \(\beta \)-capacity, it is of positive \(\gamma \)-capacity for all \(\gamma < \beta \). If it is of zero \(\beta \)-capacity, it is of zero \(\gamma \)-capacity for all \(\gamma > \beta \).

We may, without loss of generality, assume \(\int_0^{2\pi} f(x) dx = 0 \) and use the Weyl fractional integral.

Let \(f(x) \) have the Fourier series

\[
B(\alpha) \int_0^{2\pi} \int_0^{2\pi} | s - t |^{a-1} d\mu(t) d\mu(s) \leq B(\alpha) V_{1-a}(\mu(2\pi) - \mu(0)),
\]
where \(t \) signifies that \(c_0 = 0 \). Then

\[
\sum_{n=-\infty}^{\infty} c_n e^{inz}
\]

and it is sufficient to show that \(S_n \) is bounded outside a set of zero \(\beta \)-capacity, where \(S_n = \sum_{k=-n}^{n} (ik)^{-a/q} c_k e^{ikz} \) and \(\beta = 1 - \alpha \) for \(1 \leq q \leq 2 \) and \(\beta > 1 - \alpha \) for \(q > 2 \).

Assume then that \(S_n \) is unbounded in a set \(E \) of positive \(\beta \)-capacity. Then, first, there is a distribution \(\mu(x) \) concentrated on \(E \) such that

\[
\int_{0}^{2\pi} \left| x - t \right|^{-\beta} dt \mu(t)
\]

is bounded for all \(x \). Secondly, by a well known argument there is a function \(n(x) \leq n \), taking only integer values, such that

\[
\int_{0}^{2\pi} S_n(x) d\mu(x)
\]

exists and is unbounded as \(n \to \infty \). I show this last to be impossible.

For

\[
\int_{0}^{2\pi} S_n(x) d\mu(x) = \int_{0}^{2\pi} \sum_{k=-n}^{n} (ik)^{-a/q} c_k e^{ikz} d\mu(x)
\]

\[
= \int_{0}^{2\pi} \int_{0}^{2\pi} f(t) \sum_{k=-n}^{n} (ik)^{-a/q} e^{inz} dt d\mu(x).
\]

Now

\[
\left| \sum_{k=-n}^{n} (ik)^{-a/q} e^{inz} \right| \leq C \left| x - t \right|^{-\alpha q - 1}
\]

so

\[
\left| \int_{0}^{2\pi} S_n(x) d\mu(x) \right| \leq C \int_{0}^{2\pi} \left| f(t) \left\{ \int_{0}^{2\pi} \left| x - t \right|^{-\alpha q - 1} d\mu(x) \right\} dt \right.
\]

\[
\leq CM_{q}(f) M_{q'} \left[\int_{0}^{2\pi} \left| x - t \right|^{-\alpha q - 1} d\mu(x) \right].
\]

Now \(M_q(f) < \infty \) by hypothesis and we have only to show
bounded.

If \(1 \leq q \leq 2 \), then \(q' \geq 2 \) and (2) of §1 immediately shows this.

If \(q > 2 \), we write \(\beta = 1 - \gamma \). Since \(\gamma < \alpha \), there is an \(r < q \) such that \(\alpha/q = \gamma/r \). We may suppose \(\beta \) so near to \(1 - \alpha \) that \(2 < r < q \), since if we show the result for all such \(\beta \) it will immediately follow for all larger \(\beta \). We may now rewrite (1) in the form

\[
M_{q'} \left[\int_0^{2\pi} |x - t|^{\alpha/q - 1} d\mu(x) \right]
\]

which, since \(r' < 2 \), is shown to be bounded by invoking (1) of §1.

This gives the result.

3. The theorem is best possible. Construct the set \(S \) as follows.

Let \(\{\xi_n\} \) be any sequence such that \(0 < \xi_n < 1/2 \). From \(S_0 = [0, 2\pi] \) remove the open concentric interval of length \(2\pi(1 - 2\xi_1) \), thus leaving the set \(S_1 \). From each of the intervals in \(S_1 \), of length \(2\pi \xi_1 \), remove an open concentric interval of length \(2\pi \xi_1(1 - 2\xi_2) \), leaving a set \(S_2 \) consisting of four closed intervals each of length \(2\pi \xi_1 \xi_2 \). Continuing in this way, we are left, after the \(k \)th removal, with a set \(S_k \) consisting of \(2^k \) closed intervals each of length \(2\pi \xi_1 \xi_2 \cdots \xi_k \). Consequently \(m_{S_k} = 2\pi 2^k \xi_1 \xi_2 \cdots \xi_k \).

It is known [1, p. 40] that \(S = \lim S_k \) will be of positive \(\beta \)-capacity if and only if

\[
\sum_{k=1}^{\infty} 2^{-k}(\xi_1 \xi_2 \cdots \xi_k)^{-\beta} < \infty.
\]

Define \(\{f_n(x)\} \) on \([0, 2\pi] \) by

\[
\begin{align*}
f_0(x) &= 0 \quad \text{in} \quad S_0, \\
f_n(x) &= (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha/q - 1} \quad \text{in} \quad S_n \\
&= f_{n-1}(x) \quad \text{in} \quad S_0 - S_n
\end{align*}
\]

for \(n = 1, 2, 3 \cdots \). Since \(\{f_n(x)\} \) is an increasing sequence of measurable functions,

\[
f(x) = \lim_{n \to \infty} f_n(x)
\]

exists and is measurable.

It is easily seen that
A THEOREM ABOUT FRACTIONAL INTEGRALS

\[f(x) = (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha/q - 1} \text{ on } S_n - S_{n+1}, \quad n = 1, 2, \ldots, \]

so that

\[
\int_0^{2\pi} |f(x)|^q \, dx = \sum_{n=1}^\infty \int_{S_n - S_{n+1}} |f(x)|^q \, dx
\]

\[
= \sum_{n=1}^\infty (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha n - q} [mS_n - mS_{n+1}]
\]

\[
= \sum_{n=1}^\infty (1 - 2\xi_{n+1})2^n(\xi_1 \xi_2 \cdots \xi_n)^{1-\alpha n - q}.
\]

For \(q > 2 \) we may choose \(\delta > 0 \) so that \(2(1+\delta) < q \) and then put

\[2\xi_{n+1}^{1-\alpha} = 1 + (1 + \delta)n^{-1}. \]

Then

\[2^{-k}(\xi_1 \xi_2 \cdots \xi_k)^{\alpha - 1} = O(k^{-1-\delta}) \]

and so (1) with \(\beta = 1 - \alpha \) is satisfied, showing \(S \) to be of positive \((1-\alpha)\) capacity.

Further (2) is clearly finite so that \(f(x) \in L^q \).

Let \(x \) be any point of \(S \). Now \(S_k - S_{k+1} \) consists of \(2^k \) intervals each of length \(2\pi \xi_1 \xi_2 \cdots \xi_k (1 - 2\xi_{k+1}) \) none of which contain \(x \). However, one of these intervals \(I_k \) is contained in an interval of \(S_k \) which contains \(x \). Consequently

\[
\int_0^{2\pi} |x - t|^{\alpha/q - 1} f(t) \, dt = \sum_{k=1}^\infty \int_{S_k - S_{k+1}} \sum_{k=1}^\infty \int_{I_k}
\]

and this last is itself greater than

\[
(2\pi)^{\alpha/q} \sum_{k=1}^\infty (\xi_1 \xi_2 \cdots \xi_k)^{\alpha/q - 1} (\xi_1 \xi_2 \cdots \xi_k)^{-\alpha/q} (1 - 2\xi_{k+1})
\]

\[
= (2\pi)^{\alpha/q} \sum_{k=1}^\infty (1 - 2\xi_{k+1}) k^{-1} = + \infty
\]

and so \(\int_0^{2\pi} |x - t|^{\alpha/q - 1} f(t) \, dt = + \infty \) at every point of \(S \).

Now \(f(x) = f(2\pi - x) \) so that

\[
\int_0^{2\pi} |x - t|^{\alpha/q - 1} f(t) \, dt = f_{\alpha/q}(x) + f_{\alpha/q}(2\pi - x)
\]

where \(f_{\alpha/q} \) now denotes the Riemann-Liouville fractional integral.

It follows that \(f_{\alpha/q}(x) \) must be infinite in a set of positive \((1-\alpha)\)-
capacity. For, if not, suppose \(f_{a/q}(x) \) infinite in a set \(M \) of zero
\((1-\alpha)\)-capacity. Then \(f_{a/q}(2\pi-x) \) is infinite in the mirror-image \(M \) of
\(M \) about \(x=\pi \). Also \(M + M = S \), and since both \(M \) and \(M \) are of
zero \((1-\alpha)\)-capacity, so is \(S \). This contradiction gives the required
result and shows part (b) of the theorem to be best possible.

Next, let \(\beta \) be any positive number less than \(1-\alpha \) and let \(\xi \) be such
that
\[
2\xi^{1-\alpha+\beta}/2 = 1.
\]
Now consider the set \(S \) with \(\xi_n = \xi \) for all \(n \). Since \(2\xi^q > 1 \), \(S \) is of posi-
tive \(\beta \)-capacity. Defining \(f(x) \) as before we use exactly the same argu-
ment to show \(f_{a/q}(x) = +\infty \) in a set of positive \(\beta \)-capacity. Further-
more, since \(2\xi^{1-\alpha} < 1 \), (2) is bounded, showing \(f \in L^q \). This proves
part (a) of the theorem to be best possible.

In passing, we may note that it has here been shown that a func-
tion in \(L^q \) for any \(q \) may be infinite in a set which is “only just” of
measure zero. More precisely, given any \(\beta < 1 \) and any \(q > 1 \), there is
a function in \(L^q \) which is infinite in a set of positive \(\beta \)-capacity, i.e.,
in a set of positive \(\beta \)-Hausdorff measure.

4. The lemma of §1 is best possible. Consider e.g., (2) of §1. Sup-
pose this is not best possible, i.e., that there is an \(\epsilon > 0 \) for which, in
general,
\[
M_{q+\epsilon}
\left[
\int_0^{2\pi} x - t \left| a/q^\prime - 1 \right| d\mu(t) \right] < \infty.
\]
If, then, \(f(x) \in L^{(q+\epsilon)^\prime} \), we may say
\[
\left| \int_0^{2\pi} S_n(x)(x) d\mu(x) \right| \leq CM_{(q+\epsilon)^\prime}(f) M_{q+\epsilon}
\left[
\int_0^{2\pi} x - t \left| a/q^\prime - 1 \right| d\mu(t) \right],
\]
which is bounded. This would imply that (b) of the theorem is not
best possible. Since it is, we have shown (2) best possible. A similar
argument using (a) would show (1) best possible.

References

1. R. Salem and A. Zygmund, Capacity of sets and Fourier series, Trans. Amer.
2. O. Frostman, Potential d’équilibre et capacité des ensembles, Meddelande från
Lunds Univ. Mat. Sem. vol. 3 (1935).

Rhodes University