1. Introduction. Consider the continued fraction

\[f_1 + \frac{a_1}{b_1 - a_2} \frac{1}{b_2 - a_3} \cdots \]

where \(f_1 \) is a number, \(\{a_1, a_2, a_3, \ldots\} \) is a sequence of nonzero numbers, and \(\{b_1, b_2, b_3, \ldots\} \) is a sequence of numbers. We obtain conditions necessary and sufficient for (1.1) to converge absolutely, and we indicate their relationship to older sufficient conditions. We find a new characterization of positive definite continued fractions, whose importance is emphasized by the fact (Theorem 4.2) that if (1.1) converges, then there is a positive definite continued fraction which is a contraction of (1.1). We also obtain new sufficient conditions for absolute convergence of positive definite continued fractions.

2. Continued fractions and sequences of linear fractional transformations. In this paper, a subscript \(p \) denotes a positive integer. By the generator of (1.1) we mean the sequence \(\{t_1(u), t_2(u), t_3(u), \ldots\} \) of linear fractional transformations such that \(t_1(u) = f_1 + a_1/(b_1 - u) \) and \(t_{p+1}(u) = t_p[a_{p+1}/(b_{p+1} - u)] \) for \(p \geq 1 \). We denote this sequence by \(t(u) \).

Remark 2.1. For a sequence \(s(u) \) of linear fractional transformations to be the generator of a continued fraction, it is necessary and sufficient that \(s_1(\infty) \neq \infty \) and \(s_p(0) = s_{p+1}(\infty) \) for \(p \geq 1 \).

By the sequence of approximants of (1.1) we mean the sequence \(\{f_1, f_2, f_3, \ldots\} \) such that \(f_p = t_p(\infty) \) for \(p \geq 1 \). We denote this sequence by \(f \).

Remark 2.2. For a sequence \(x \) of points in the complex plane to be the sequence of approximants of a continued fraction with nonzero partial numerators, it is necessary and sufficient that \(x_1 \neq \infty \) and \(x_p \neq x_{p+1} \) for \(p \geq 1 \).
If \(f \) has the property that there exists a positive integer \(n \) such that (1) the sequence \(\{f_n, f_{n+1}, f_{n+2}, \ldots \} \) is bounded and (2) either \(n = 1 \) or \(f_{n-1} = \infty \), then by \(B_f \) we mean the set of all sequences \(R \) such that for \(p \geq 1 \)

\[
\begin{align*}
1) & \quad R_p \text{ is a circle plus its interior,} \\
2.1) & \quad R_p \supseteq R_{p+1}, \text{ and} \\
3) & \quad f_p \text{ is in } R_p \text{ if } p \geq n.
\end{align*}
\]

Theorem 2.1. If \(f \) is bounded, then for \(R \) to be a member of \(B_f \) it is necessary and sufficient that

\[
\begin{align*}
1) & \quad R_1 \text{ is a circle plus its interior,} \\
2) & \quad \text{if } p \geq 1, \text{ then } t_p^{-1}(R_p) \text{ is a closed half-plane or a circle plus its exterior, and} \\
3) & \quad \text{if } p \geq 1, \text{ then } t_p^{-1}(R_p) \supseteq t_{p+1}^{-1}(R_{p+1}).
\end{align*}
\]

Moreover, if \(R \) is a sequence in \(B_f \), and if \(p \geq 1 \), then \(t_p^{-1}(R_p) \) is a closed half-plane if \(f_p \) is a boundary point of \(R_p \), or is a circle plus its exterior if \(f_p \) is an interior point of \(R_p \).

Proof. The theorem is a direct consequence of the definitions of \(f \), \(t(u) \), and \(B_f \).

We denote by \(h \) the sequence \(\{h_1, h_2, h_3, \ldots \} \) of points in the complex plane such that if \(p \geq 1 \) then

\[
h_p = t_{p+1}^{-1}(\infty).
\]

From the relations \(t_1(b_1) = \infty \) and \(t_{p+1}(u) = t_p[a_{p+1}/(b_{p+1} - u)] \), it follows that

\[
h_1 = b_1 \quad \text{and} \quad h_{p+1} = b_{p+1} - a_{p+1}/h_p \quad \text{for } p \geq 1.
\]

If \(p \geq 1 \), then

\[
t_p(\infty) = f_p, \quad t_p(0) = f_{p+1}, \quad \text{and} \quad t_{p+1}(b_{p+1}) = f_p;
\]

so that

\[
f_p = \infty \text{ if and only if } h_p = \infty,
\]

\[
f_{p+1} = \infty \text{ if and only if } h_p = 0, \text{ and}
\]

\[
f_p = \infty \text{ if and only if } h_{p+1} = b_{p+1}.
\]

If \(p \geq 1 \), and if \(f_p \neq \infty \) and \(f_{p+1} \neq \infty \), then

\[
t_p(u) = f_p + \frac{h_p(f_{p+1} - f_p)}{h_p - u}.
\]

If \(p \geq 1 \), and if \(f_p \neq \infty \), \(f_{p+1} \neq \infty \), and \(f_{p+2} \neq \infty \), then

\[
\frac{f_{p+1} - f_{p+2}}{f_p - f_{p+1}} = \frac{a_{p+1}}{h_{p+1}} = \frac{a_{p+1}}{h_p h_{p+1}}.
\]

3. **Conditions necessary and sufficient for absolute convergence.**

If \(x \) is a sequence of points in the complex plane, the statement that \(x \) converges absolutely means that there exists a positive integer \(n \)
such that (1) if \(p \geq n \), then \(x_p \neq \infty \) and (2) \(\sum_{p=n}^{\infty} |x_p - x_{p+1}| \) converges. The statement that a continued fraction converges absolutely means that its sequence of approximants converges absolutely.

Theorem 3.1. For (1.1) to converge absolutely, it is necessary and sufficient that there exist a positive integer \(n \), a sequence \(s \) of numbers, and a sequence \(q \) of numbers such that

\[
\begin{align*}
(1) & \quad s_p > 0 \text{ and } q_p \neq 0 \text{ for } p \geq n, \text{ and } \sum_{p=n}^{\infty} s_p \text{ converges,} \\
(2) & \quad \text{there is a sequence } R \text{ in } B_f \text{ such that if } p \geq n, \text{ then } t_p^{-1}(R_p) \text{ is the region defined by the inequality } s_p \cdot |u| \leq |u - q_p|, \text{ and} \\
(3) & \quad \text{there is a sequence } R' \text{ in } B_f \text{ such that if } p \geq n, \text{ then } q_p \text{ is in } t_p^{-1}(R'_p).
\end{align*}
\]

Proof. A. Suppose that there exist such an integer \(n \) and such sequences \(s \) and \(q \). Let \(m \) denote an integer such that if \(p = m \), then \(p \geq n \) and \(f_p \) is in \(R_p \). Now \(R_p \) is a circle plus its interior, \(\infty \) is not in \(R_p \), and \(h_p = t_p^{-1}(\infty) \) is not in \(t_p^{-1}(R_p) \); hence if \(p \geq m \), then \(s_p \cdot |h_p| > |h_p - q_p| \), or \(s_p > |(h_p - q_p)/h_p| \). Moreover, if \(p \geq m \), then by (2.4) and (2.5),

\[
|f_{p+1} - f_p|/(t_p(q_p) - f_p) = |(h_p - q_p)/h_p| < s_p.
\]

By hypothesis, \(f_p \) is in \(R_m \) and \(t_p(q_p) \) is in \(R'_m \), and consequently there exists a number \(M \) such that if \(p \geq m \), then \(t_p(q_p) - f_p < M \), so that \(|f_{p+1} - f_p| < Ms_p \). Since \(\sum_{p=n}^{\infty} s_p \) converges, (1.1) converges absolutely.

B. Suppose that (1.1) converges absolutely. Let \(n \) denote the positive integer such that if \(p \geq n \), then \(f_p \neq \infty \) and such that either \(n = 1 \) or \(f_{n-1} = \infty \). Let \(R_n \) be a circle plus its interior, with radius \(r \) and center \(c \) such that if \(p \geq n \), then \(3r > 4|f_p - c| > 2r \). Let \(R'_n \) be a circle plus its interior with radius \(r' \) and center \(c \), such that \(R'_n \supset R_n \) and such that if \(p \geq n \), then the inversion of \(f_p \) in the boundary of \(R_n \) is in \(R'_n \). For \(p \geq 1 \), let \(R_p = R_n \) and \(R'_p = R'_n \). Then \(R \) is in \(B_f \) and \(R' \) is in \(B_f \).

For \(p \geq n \), let \(t_p(q_p) \) be the inversion of \(f_{p+1} \) in the boundary of \(R_p \). By construction, \(t_p(q_p) \) is in \(R'_p \), so that \(q_p \) is in \(t_p^{-1}(R'_p) \). Moreover, if \(p \geq n \), then there exists a positive number \(s'_p \) such that \(R_p \) is the region defined by \(s'_p |u - f_{p+1}| \leq |u - t_p(q_p)| \); and since \(3r > 4|f_{p+1} - c| > 2r \), there exist positive numbers \(D \) and \(s' \) such that \(|t_p(q_p) - f_p| \leq D \) and \(s'_p \leq s' \) for \(p \geq n \). By (2.5), \(t_p^{-1}(R_p) \) is the region defined by \(s_p |u| \leq |u - q_p| \), where \(s_p = s'_p |(f_{p+1} - f_p)/(t_p(q_p) - f_p)| < |f_{p+1} - f_p|s'/D \). Hence \(\sum_{p=n}^{\infty} s_p \) converges. This completes the proof.

Lemma 3.2a. If \(s \) is a sequence of positive numbers, then for \(\sum_{p=1}^{\infty} s_p \) to converge it is necessary and sufficient that there exist a sequence \(d \) of
positive numbers such that for $p \geq 1$

$$\frac{s_{p+1}}{s_p} \leq \frac{d_p}{1 + d_{p+1}}.$$

Proof. Suppose that d is such a sequence. If $p \geq 1$, then $s_{p+1} \leq s_p$, and by induction, if n is an integer greater than p, then $\sum_{k=1}^n s_k \leq s_p d_p$, so that $\sum_{k=1}^n s_k < \sum_{k=1}^p s_p + s_p d_p$. Hence $\sum_{k=1}^n s_k$ converges.

Suppose that $\sum_{k=1}^n s_k$ converges. Let r be a sequence of non-negative real numbers such that $\sum_{k=1}^n r_k$ converges, and for $p \geq 1$, let d_p be the positive number such that $s_p d_p = \sum_{k=1}^n (r_k + s_k)$. Then $s_p d_p = r_{p+1} + s_{p+1} d_{p+1} \leq s_{p+1} + s_{p+1} d_{p+1}$, so that $s_{p+1}/s_{p} \leq d_p/(1 + d_{p+1})$. This completes the proof.

Remark 3.1. From the above proof it follows that if in Lemma 3.2a the statement $s_{p+1}/s_p \leq d_p/(1 + d_{p+1})$ is replaced by either of the statements

$$\frac{s_{p+1}}{s_p} < \frac{d_p}{1 + d_{p+1}}, \quad \frac{s_{p+1}}{s_p} = \frac{d_p}{1 + d_{p+1}},$$

then the resulting lemma is true.

Example 3.1. Let $a > -1$, $b > a+1$, and $d_p = (a+p)/(b-a-1)$ for $p \geq 1$. By Lemma 3.2a, the series

$$1 + \frac{a + 1}{b + 1} + \frac{(a + 1)(a + 2)}{(b + 1)(b + 2)} + \cdots$$

converges.

Lemma 3.2b. For f to converge absolutely, it is necessary and sufficient that there exist a positive integer n and a sequence d of positive numbers such that, for $p \geq n$,

(i) $d_p > 1 + d_{p+1}$ if $f_{p+1} = \infty$ or if $f_p = f_{p+2} = \infty$ and

(ii) $d_p |f_p - f_{p+1}| > (1 + d_{p+1}) |f_{p+1} - f_{p+2}|$ if

(3.2)

(a) $f_{p+1} \neq \infty$ and

(b) $f_p \neq \infty$ or $f_{p+2} \neq \infty$.

Proof. If f converges absolutely, then there exists a positive integer n such that $f_p \neq \infty$ if $p \geq n$; and by Remark 3.1 there exists a sequence d of positive numbers such that (ii) holds for $p \geq n$.

Suppose that there exist a positive integer n and a sequence d of positive numbers such that (3.2) holds for $p \geq n$. We first show that if $p \geq n + d_n$, then $f_p \neq \infty$. Suppose that m is an integer, that $m \geq n + d_n$, and that $f_m = \infty$. Then for $p = m - 1$, the relation (i) holds by hypothesis, and $d_{m-1} > 1 + d_m > 1$. Since $f_m = \infty$, it follows (Remark
(2.2) that \(f_{m-1} \neq \infty \). If \(f_{m-2} \neq \infty \), therefore, (ii) must hold for \(p = m-2 \); but this is impossible, since \(f_m = \infty \). Hence \(f_{m-2} = \infty \), and (i) holds for \(p = m-2 \), so that \(d_{m-2} > 1 + d_{m-1} > 2 \). If \(m > n+2 \), then (i) must hold for \(p = m-3 \), and \(d_{m-3} > 3 \). If \(m > n+3 \), then \(f_{m-4} = \infty \) and \(d_{m-4} > 4 \). By induction, \(d_n > m-n \), so that \(m < n + d_n \). Hence the assumption that \(f_m = \infty \) is false; and if \(p \geq n + d_n \), then \(f_p \neq \infty \). By Lemma 3.2a, \(f \) converges absolutely. This completes the proof.

Theorem 3.2. For (1.1) to converge absolutely, it is necessary and sufficient that there exist a positive integer \(n \) and a sequence \(d \) of positive numbers such that, for \(p \geq n \),

\[
\begin{align*}
(i) & \quad \text{if } b_{p+1} = 0, \text{ then } d_p > 1 + d_{p+1}, \\
(ii) & \quad \text{if } b_{p+1} \neq 0 \text{ and if } t_{p+1}^{-1}(K_{p+1}) \text{ is the region defined by } d_p |u| \leq (1 + d_{p+1}) |u - b_{p+1}|, \text{ then } K_{p+1} \text{ is a circle plus its interior.}
\end{align*}
\]

Proof. The conditions (3.2) of Lemma 3.2b can be written

\[
\begin{align*}
(a) & \quad d_p > 1 + d_{p+1} \text{ if } f_p = f_{p+2}, \\
(b) & \quad d_p > 1 + d_{p+1} \text{ if } f_p \neq f_{p+2} \text{ and } f_{p+1} = \infty, \\
(c) & \quad d_p |f_p - f_{p+1}| > (1 + d_{p+1}) |f_{p+1} - f_{p+2}| \text{ if } f_p \neq f_{p+2} \text{ and } f_{p+1} \neq \infty.
\end{align*}
\]

Since \(f_p = t_{p+1}(b_{p+1}), f_{p+2} = t_{p+1}(0), \) and \(\infty = t_{p+1}(h_{p+1}) \), the first two of these conditions can be written

\[
\begin{align*}
(a') & \quad d_p > 1 + d_{p+1} \text{ if } b_{p+1} = 0, \\
(b') & \quad d_p > 1 + d_{p+1} \text{ if } b_{p+1} \neq 0 \text{ and } h_{p+1} = \infty;
\end{align*}
\]

as for the third, where \(b_{p+1} \neq 0 \) and \(h_{p+1} \neq \infty \), similar consideration of the two cases (1) \(h_{p+1} = 0 \) and (2) \(h_{p+1} = b_{p+1} \), and use of (2.6) for the case (3) \(h_{p+1} \neq 0, h_{p+1} \neq b_{p+1} \), shows that (c) may be written

\[
(c') d_p |h_{p+1} - b_{p+1}| > (1 + d_{p+1}) |h_{p+1} - b_{p+1}| \text{ if } b_{p+1} \neq 0 \text{ and } h_{p+1} \neq \infty.
\]

Now if \(K_{p+1} \) is defined by \(d_p |u| \leq (1 + d_{p+1}) |u - b_{p+1}| \), where \(d_p > 0, d_{p+1} > 0, \) and \(b_{p+1} \neq 0 \), then for \(K_{p+1} \) to be a circle plus its interior, it is necessary and sufficient that the point \(h_{p+1} = t_{p+1}^{-1}(\infty) \) be exterior to \(t_{p+1}^{-1}(K_{p+1}) \). Hence the conditions \((a'), (b'), \) and \((c') \) are equivalent to (3.3), and the theorem now follows from Lemma 3.2b. This completes the proof.

Remark 3.2. If \(a_1 = 1 \) and \(b_1 = 1 \) and \(a_{p+1} = -c_p \) for \(p \geq 1 \), then (1.1) is the continued fraction

\[
\frac{1}{1 + c_1} \frac{1}{1 + c_2} \frac{1}{1 + \cdots}.
\]
where c is a sequence of nonzero numbers. If, in the notation of Theorem 3.2, $r_p = d_p/(1 + d_{p+1})$, then $t^{-1}_{p+1}(K_{p+1})$ is defined by the inequality $r_p |u| \leq |u - 1|$. The condition $t^{-1}_p(K_p) \supseteq t^{-1}_p(K_{p+1})$ gives the inequalities (5.5), p. 376, of Lane and Wall [1] for $p \geq 1$. The condition $t^{-1}_p(K_{p-1}) \subseteq t^{-1}_p(K_{p-1}p+1)$ gives, for $p \geq 2$, the inequalities (13) of Scott and Wall [2].

4. A characterization of positive definite continued fractions. The continued fraction (1.1) is said to be positive definite if

(i) $I(b_1) > 0$ and $I(b_p) \geq 0$ for $p > 1$, and

(ii) there exists a sequence g of numbers such that $0 < g_1 \leq 1$

and, for $p \geq 1$, $0 \leq g_{p+1} \leq 1$ and

$$|a_{p+1} - R(a_{p+1})| \leq 2I(b_p)I(b_{p+1})(1 - g_p)g_{p+1}.$$

If F is a continued fraction, the statement that F is equivalent to (1.1) means that the sequence of approximants of F is the sequence of approximants of (1.1).

Remark 4.1. If F is a continued fraction, and if $t'(u)$ is the generator of F, then for F to be equivalent to (1.1) it is necessary and sufficient that there exist a sequence σ of nonzero numbers such that $t'_p(u) = t_p(u/\sigma_p)$ for $p \geq 1$. If σ is such a sequence, then F is the continued fraction

$$f_1 + \frac{\sigma_1 a_1}{\sigma_1 b_1 - \sigma_1 \sigma_2 a_2} + \frac{\sigma_2 b_2 - \sigma_2 \sigma_3 a_3}{\sigma_3 b_3 - \cdots}.$$

Theorem 4.1. For (1.1) to be equivalent to a positive definite continued fraction, it is necessary and sufficient that there exist a sequence R in B_f such that if $p \geq 1$, then $t^{-1}_p(R_p)$ is a closed half-plane; i.e., if $p \geq 1$, then f_p is a boundary point of R_p.

Proof. Let $t^{-1}(R)$ be a sequence of closed half-planes. Then there exist a sequence σ of nonzero numbers and a sequence k of real numbers such that if $p \geq 1$, then $t^{-1}_p(R_p)$ is defined by $R(\sigma_p u) \leq k_p$. We show first that for R to be in B_f it is necessary and sufficient that

(i) $0 \leq k_1 < R(\sigma_1 b_1)$ and $0 \leq k_p \leq R(\sigma_p b_p)$ for $p > 1$, and

(ii) $R(\sigma_p a_{p+1}a_{p+1}) + |\sigma_p a_{p+1}a_{p+1}| \leq 2k_p R(\sigma_p b_{p+1}b_{p+1} - k_{p+1})$ for $p \geq 1$.

Numbers in brackets refer to the bibliography at the end of the paper.

This is an adaptation to (1.1) of the definition on pp. 67–71 of [3], where it is assumed that $g_i I(b_i) > 0$; e.g., in formula (17.3) of [3].
For R_1 to be a circle plus its interior, it is necessary and sufficient that the point $t^{-1}_1(\infty) = b_1$ be exterior to $t^{-1}_1(R_1)$; i.e., that $R(\sigma_1 b_1) > k_1$.

If $p \geq 1$, then ∞ is a boundary point of $t^{-1}_p(R_p)$, and $f_p = t_p(\infty)$ is a boundary point of R_p; similarly, f_{p+1} is a boundary point of R_{p+1}. If $R_p \supseteq R_{p+1}$, then the point $t^{-1}_p(f_{p+1}) = 0$ is in $t^{-1}_p(R_p)$, or $0 \leq k_p$; moreover, the point $t^{-1}_{p+1}(f_p) = b_{p+1}$ is not an interior point of $t^{-1}_{p+1}(R_{p+1})$, or $R(\sigma_{p+1} b_{p+1}) \leq k_{p+1}$. Hence for $t^{-1}(R)$ to be in B_f, the conditions (i) of (4.2) are necessary.

Suppose that (i) of (4.2) holds. Then for $p \geq 1$, $t^{-1}_p(R_{p+1})$ is defined by

$$R(\sigma_{p+1} a_{p+1} u) \geq 0 \quad \text{if} \quad R(\sigma_{p+1} b_{p+1}) = k_{p+1},$$

and

$$u - \frac{\sigma_{p+1} a_{p+1}}{2R(\sigma_{p+1} b_{p+1} - k_{p+1})} \leq \frac{\sigma_{p+1} a_{p+1}}{2R(\sigma_{p+1} b_{p+1} - k_{p+1})}$$

if $R(\sigma_{p+1} b_{p+1}) > k_{p+1}$.

Hence if (i) of (4.2) holds, then (ii) is a condition necessary and sufficient for the relations $R_p \supseteq R_{p+1}$ to hold for $p \geq 1$. We conclude that $t^{-1}(R)$ is in B_f if and only if (4.2) holds.

If for $p \geq 1$ we take $\sigma_p = -i$ and $k_p = (1-g_p)R(-ib_p)$, where $g_p = 1$ if $k_p = 0$, the theorem now follows from (4.1) and Remark 4.1. This completes the proof.

Remark 4.2. By Theorem 4.1, a bounded increasing infinite sequence of real numbers is the sequence of approximants of a positive definite continued fraction. More generally, if x is a sequence of numbers, if $x_p \neq x_{p+1}$ for $p \geq 1$, and if there exists a number c such that $|x_p - c| \geq |x_{p+1} - c|$ for $p \geq 1$, then x is the sequence of approximants of a positive definite continued fraction.

Theorem 4.2. If (1.1) converges, then there exists a positive definite continued fraction whose sequence of approximants is a subsequence of f.

Proof. Let c be the number such that $f_p \to c$ as $p \to \infty$. Then there exists an infinite subsequence, x, of f such that if $p \geq 1$, then $x_p \neq \infty$ and $|x_p - c| > |x_{p+1} - c|$. By Remark 4.2, x is the sequence of approximants of a positive definite continued fraction. This completes the proof.

5. Absolute convergence of positive definite continued fractions.

Throughout this section we suppose that (1.1) is equivalent to a positive definite continued fraction, and that k is a sequence of real numbers such that R is in B_f, where, for $p \geq 1$, $t^{-1}_p(R_p)$ is the closed half-plane $R(u) \leq k_p$. The conditions (4.2) hold, therefore, with $\sigma_p = 1$, and $t^{-1}_p(R_{p+1})$ is the region defined by (4.3), for $p \geq 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 5.1. If there exist a positive integer \(n \) and a positive number \(M \) such that \(|a_{p+1}| \leq Mk_pR(b_{p+1} - k_{p+1})\) for \(p \geq n \), then (1.1) converges absolutely.

Proof. Since, by hypothesis, (1.1) is equivalent to a positive definite continued fraction, its sequence of approximants is bounded; and by (2.4), \(h_p \neq \infty \) and \(h_p \neq 0 \) for \(p \geq 1 \). Moreover, if \(p \geq n \), then \(t_p^{-1}(R_{p+1}) \) is a circle plus its interior; let \(v_p \) be the point of \(t_p^{-1}(R_{p+1}) \) farthest from \(h_p \). By (2.5),

\[
\frac{|f_{p+1} - f_p|}{t_p(v_p) - f_p} = \frac{|h_p - v_p|}{h_p} \leq 1 + \frac{|v_p|}{h_p}.
\]

Since the origin is a boundary point of \(t_p^{-1}(R_{p+1}) \), \(|v_p| \) is less than or equal to the diameter of \(t_p^{-1}(R_{p+1}) \), or \(|v_p| \leq |a_{p+1}|/R(b_{p+1} - k_{p+1})\); hence \(|v_p| < Mk_p \). Since \(R_p \) is a circle plus its interior, \(h_p \) is not in the closed half-plane \(R(u) \leq k_p \); so \(|h_p| \geq R(h_p) > k_p \). Finally, by (2.5), \(t_p(v_p) \) is the point of \(R_{p+1} \) nearest \(f_p \); so \(|t_p(v_p) - f_p| \leq 2(r_p - r_{p+1})\), where for \(p \geq 1 \), \(r_p \) is the radius of \(R_p \). We now conclude that if \(p \geq n \), then \(|f_{p+1} - f_p| < 2(1 + M)(r_p - r_{p+1})\). Since \(\sum_{p=n}^{\infty} (r_p - r_{p+1}) \) is a convergent positive-term series, (1.1) converges absolutely. This completes the proof.

Corollary 5.1a. If there exist a sequence \(g \) and a positive number \(M \) such that, for \(p \geq 1 \),

(i) \(0 < g_p < 1 \),
(ii) \(|c_p| - R(c_p) \leq 2(1 - g_p)g_{p+1} \), and
(iii) \(|c_p| < M(1 - g_p)g_{p+1} \),

then the continued fraction (3.4) converges absolutely.

Remark 5.1. The above corollary is a true generalization of the convergence condition \(|c_p| \leq (1 - g_p)g_{p+1} \), of Pringsheim [4]; compare it with the condition \(|c_p| - R(c_p) \leq 2r(1 - g_p)g_{p+1} \), where \(0 < r < 1 \), \(p \geq 1 \), on pp. 142–143 of [3].

Remark 5.2. It should be noted that in Theorem 5.1 and its corollary we do not conclude that the common part of \(R_1, R_2, R_3, \ldots \) is a point. Actually there exists an absolutely convergent positive definite continued fraction which has the property that if \(t^{-1}(R) \) is a sequence of closed half-planes such that \(R \) is in \(B_f \), then the common part of \(R_1, R_2, R_3, \ldots \) is a circle plus its interior. We give the following example. Let \(s \) be a decreasing sequence of positive numbers such that \(\sum_{p=1}^{\infty} s_p \) converges. For \(p \geq 1 \), let each of \(R_{3p-2}, R_{3p-1}, \) and \(R_p \) be the region defined by \(|u - (s_p - 1)| \leq 1 + s_p\), and let \(f_{3p-2}, f_{3p-1}, \)
and \(f_{3p} \) be boundary points of \(R_{3p} \) such that \(\arg f_{3p-2} = 0 \), \(\arg f_{3p-1} = 1 \), and \(\arg f_{3p} = -1 \). Then \(f \) is the sequence of approximants of an absolutely convergent positive definite continued fraction. If \(R' \) is a sequence in \(B_j \) such that \(f_p \) is a boundary point of \(R'_p \) for \(p \geq 1 \), then \(R'_{3p-2} \supset R_{3p-2} \) for \(p \geq 1 \), and hence the common part of \(R'_1, R'_2, R'_3, \ldots \) is a circle plus its interior.

Theorem 5.2. Let \(e_p = \left| a_{p+1} \right| \left[2k_p R(b_{p+1} - k_{p+1}) - R(a_{p+1}) \right] \) for \(p \geq 1 \). If \(\sum_{p=1}^\infty (1 - e_p) \) diverges, then (1.1) converges. If there exists a sequence \(d \) of positive numbers such that \(e_p(2 + 2d_{p+1} - d_p) \leq d_p \) for \(p \geq 1 \), then (1.1) converges absolutely.

Proof. A. We show first that \(r_{p+1}/r_p \leq 2e_p/(1 + e_p) \) for \(p \geq 1 \), where \(r_p \) is the radius of \(R_p \). If \(R(b_{p+1}) = k_{p+1} \), then by (4.2) \(a_{p+1} < 0 \) and hence \(e_p = 1 \), so that the relation \(r_{p+1}/r_p \leq 2e_p/(1 + e_p) \) holds. If \(R(b_{p+1}) > k_{p+1} \), then \(t_p^{-1}(R_{p+1}) \) is a circle plus its interior; let \(v_p \) be the point of \(t_p^{-1}(R_{p+1}) \) farthest from \(h_p \), and let \(w_p \) be the point of \(t_p^{-1}(R_{p+1}) \) nearest \(h_p \). By (2.5), \(t_p(v_p) \) is the point of \(R_{p+1} \) nearest \(f_p \), and \(t_p(w_p) \) is the point of \(R_{p+1} \) farthest from \(f_p \); so \(2r_{p+1} = |t_p(v_p) - t_p(w_p)| \) and \(2r_p \geq |t_p(w_p) - f_p| \). By (2.5), \(|t_p(v_p) - t_p(w_p)|/|t_p(w_p) - f_p| = |(v_p - w_p)/(h_p - v_p)| \); hence \(r_{p+1}/r_p \leq |(v_p - w_p)/(h_p - v_p)| \). Since the diameter of \(t_p^{-1}(R_{p+1}) \) is \(|v_p - w_p| = \left| a_{p+1} \right|/R(b_{p+1} - k_{p+1}) \), and since the distance from \(h_p \) to \(v_p \) is \(|h_p - v_p| > k_p + \left| a_{p+1} \right| - R(a_{p+1}) / 2R(b_{p+1} - k_{p+1}) \), it follows that

\[
\frac{r_{p+1}}{r_p} \leq \frac{2}{2k_p R(b_{p+1} - k_{p+1}) - R(a_{p+1}) + \left| a_{p+1} \right|} = \frac{2e_p}{1 + e_p}.
\]

B. Suppose that \(\sum_{p=1}^\infty (1 - e_p) \) diverges. Now by definition and by (4.2), \(0 < e_p \leq 1 \); so \(\sum_{p=1}^\infty (1 - e_p)/(1 + e_p) \) diverges. But \(1 - r_{p+1}/r_p \geq 1 - 2e_p/(1 + e_p) = (1 - e_p)/(1 + e_p) \). Hence if for \(p \geq 1 \), \(s_p = 1 - r_{p+1}/r_p \), then \(\sum_{p=1}^\infty s_p \) is a divergent series whose terms are non-negative real numbers. Since \(r_{p+1} = r_1(1 - s_1)(1 - s_2) \cdots (1 - s_p) \), it follows that \(r_p \to 0 \) as \(p \to \infty \), and consequently (1.1) converges.

C. Suppose that there exists a sequence \(d \) of positive numbers such that \(e_p(2 + 2d_{p+1} - d_p) \leq d_p \) for \(p \geq 1 \). Then for \(p \geq 1 \), \(r_{p+1}/r_p \leq 2e_p/(1 + e_p) \leq d_p/(1 + d_{p+1}) \); and by Lemma 3.2a, \(\sum_{p=1}^\infty r_p \) converges. Since \(|f_{p+1} - f_p| \leq 2r_p \), (1.1) converges absolutely. This completes the proof of the theorem.

Example 5.1. Let \(s \) be a positive number greater than 4. If \(0 < e_p \leq p/s \) for \(p \geq 1 \), then the continued fraction (3.4) converges absolutely. This can be seen by taking \(k_p = 1/2 \) and \(d_p = 4p/(s - 4) \) in Theorem 5.2. In Corollary 6.1a, p. 380, of [1], it was required that an infinite subsequence of \(c \) be bounded.
Remark 5.3. If $c_p = p(p+x)/(1+x)^2$ for $p \geq 1$, it can be shown that (3.4) converges absolutely for $x > 0$; it was shown on p. 379 of [1] that if $x = 0$, then (3.4) converges but does not converge absolutely.

Bibliography

University of Texas