SOME SUMS CONNECTED WITH QUADRATIC RESIDUES

L. CARLITZ

1. A well known theorem of Dirichlet asserts that if \(p \) is a prime \(\equiv 3 \pmod{4} \), then

\[
\sum_{r=1}^{(p-1)/2} \left(\frac{r}{p} \right) > 0,
\]

that is, among the integers 1, 2, \cdots, \((p-1)/2\), there are more quadratic residues of \(p \) than nonresidues. A concise proof of this theorem has recently been given by Moser [2]; Whiteman [4] has proved several closely related results.

In the present note we indicate a generalization of (1.1) and in particular that for \(p \equiv 3 \pmod{4} \),

\[
(-1)^{k+1} \sum_{h=1}^{(p-1)/2} \left(\frac{h}{p} \right) B_{2k+1} \left(\frac{h}{p} \right) \quad \text{and}
\]

\[
(-1)^k \sum_{h=1}^{(p-1)/2} \left(\frac{h}{p} \right) E_{2k} \left(\frac{2h}{p} \right)
\]

are positive for \(k \geq 0 \), while for \(p \equiv 1 \pmod{4} \),

\[
(-1)^{k+1} \sum_{h=1}^{(p-1)/2} \left(\frac{h}{p} \right) B_{2k} \left(\frac{h}{p} \right) \quad \text{and}
\]

\[
(-1)^k \sum_{h=1}^{(p-1)/2} \left(\frac{h}{p} \right) E_{2k-1} \left(\frac{2h}{p} \right)
\]

are positive for \(k \geq 1 \). In (1.2) and (1.3), \(B_k(x) \) and \(E_k(x) \) denote the Bernoulli and Euler polynomials, respectively, of degree \(k \).

2. In the familiar summation [1, p. 153]

\[
\sum_{r=1}^{n-1} \left(\frac{r}{p} \right) e^{2\pi i r n / p} = \begin{cases}
\left(\frac{n}{p} \right) p^{1/2} & (p \equiv 1 \pmod{4}), \\
i \left(\frac{n}{p} \right) p^{1/2} & (p \equiv 3 \pmod{4}),
\end{cases}
\]

which is valid for all \(n \), we first take \(p \equiv 3 \pmod{4} \). Then (2.1) becomes

Presented to the Society, September 5, 1952; received by the editors May 12, 1952.
SOME SUMS CONNECTED WITH QUADRATIC RESIDUES

\[(2.2) \sum_{n=1}^{\infty} \left(\frac{r}{p} \right) \sin \frac{2\pi rn}{p} = \frac{1}{2} \left(\frac{n}{p} \right) \psi^{1/2} \quad (p = 2m + 1). \]

If we multiply both sides of (2.2) by \(a_n\) and sum over \(n\), then

\[(2.3) \sum_{n=1}^{\infty} \left(\frac{r}{p} \right) f \left(\frac{2n}{p} \right) = \frac{1}{2} \psi^{1/2} \sum_{n=1}^{\infty} \left(\frac{n}{p} \right) a_n, \]

where

\[f(x) = \sum_{n=1}^{\infty} a_n \sin n\pi x.\]

If we assume \(a_n\) real and \(\sum a_n\) absolutely convergent, then we may be able to infer from (2.3) that the sum in the left member is positive. For example let \(a_n = a_n a_s\) for arbitrary integers \(r, s\) and let \(|a_n| < 1\) for all \(n\), then

\[\sum_{n=1}^{\infty} \left(\frac{n}{p} \right) a_n = \prod_e \left\{ 1 - \left(\frac{q}{p} \right) a_e \right\}^{-1} > 0; \]

the product extends over all primes \(q\). In some instances the assumption of absolute convergence can be weakened.

In particular if we make use of the expansion [3, p. 65]

\[B_{2k+1}(x) = (-1)^{k+1} \frac{2(2k + 1)!}{(2\pi)^{2k+1}} \sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n^{2k+1}}, \]

then (2.3) becomes

\[(-1)^{k+1} \sum_{h=1}^{m} \left(\frac{h}{p} \right) B_{2k+1} \left(\frac{h}{p} \right) \]

\[(2.4) = \frac{(2k + 1)! \psi^{1/2}}{(2\pi)^{2k+1}} \sum_{n=1}^{\infty} \left(\frac{n}{p} \right) \psi^{1/2} \sum_{n=1}^{\infty} \left(\frac{n}{p} \right) a_n \]

\[= \frac{(2k + 1)! \psi^{1/2}}{(2\pi)^{2k+1}} \prod_e \left\{ 1 - \left(\frac{q}{p} \right) \right\}^{-1} \]

where the product extends over all primes \(q\). We infer that the left member of (2.4) is positive for \(k \geq 0\) (the case \(k = 0\) requires special treatment since the convergence of the series on the right is not absolute).

Similarly it follows from [3, p. 66]
that
\[
(-1)^k \sum_{h=1}^{m} \left(\frac{h}{p} \right) E_{2k} \left(\frac{2h}{p} \right) = \frac{2(2k)!}{\pi^{2k+1}} \rho^{1/2} \sum_{n=0}^{\infty} \left(\frac{2n+1}{(2n+1)^{2k+1}} \right) \]
(2.5)

We infer that the left member of (2.5) is positive for \(k \geq 0 \) (again the case \(k = 0 \) requires special treatment; compare [2]).

3. For \(p \equiv 1 \pmod{4} \), (2.1) becomes
\[
\sum_{r=1}^{m} \left(\frac{r}{p} \right) \cos \frac{2\pi r n}{p} = \frac{1}{2} \left(\frac{n}{p} \right) \rho^{1/2} \quad (p = 2m + 1),
\]
by means of which we can again assert an identity like (2.3) where \(f(x) \) is now a cosine series. However we shall discuss only the particular cases corresponding to the Bernoulli and Euler polynomials. In the first place, making use of [3, p. 65]
\[
B_{2k}(x) = (-1)^{k+1} \frac{2(2k)!}{(2\pi)^{2k}} \sum_{n=1}^{\infty} \cos \frac{2\pi n x}{n^{2k}},
\]
we get
\[
(-1)^{k+1} \sum_{h=1}^{m} \left(\frac{h}{p} \right) B_{2k} \left(\frac{h}{p} \right) = \frac{2(2k)!}{(2\pi)^{2k}} \rho^{1/2} \sum_{n=1}^{\infty} \left(\frac{n}{p} \right) \frac{\cos \frac{2n \pi x}{n^{2k}}}{n^{2k}}.
\]
(3.2)

It follows that the left member of (3.2) is positive for \(k \geq 1 \). Secondly, by means of [3, p. 66]
\[
E_{2k-1}(x) = (-1)^k \frac{4(2k-1)!}{\pi^{2k}} \sum_{n=0}^{\infty} \cos \frac{(2n+1) \pi x}{(2n+1)^{2k}},
\]
we infer
\[
(-1)^k \sum_{h=1}^{m} \left(\frac{h}{p} \right) E_{2k} \left(\frac{2h}{p} \right) = \frac{2(2k-1)!}{\pi^{2k}} \sum_{n=0}^{\infty} \left(\frac{2n+1}{(2n+1)^{2k}} \right).
\]
(3.3)
It follows that the left member of (3.3) is positive for $k \geq 1$.

References

1. E. Landau,
2. L. Moser,
3. N. E. Nörlund,
 Vorlesungen über Differenzenrechnung, Berlin, 1924.
4. A. L. Whiteman,

Duke University

FACTORIZATION OF n-SOLUBLE AND n-NILPOTENT GROUPS

REINHOLD BAER

If n is an integer [positive or negative or 0], and if the elements x and y in the group G meet the requirements

$$(xy)^n = x^n y^n \text{ and } (yx)^n = y^n x^n,$$

then we term the elements x and y n-commutative. It is not difficult to verify that n-commutativity and $(1-n)$-commutativity are equivalent properties of the elements x and y, that $(1-n)$-commutativity implies ordinary commutativity, and that commuting elements are n-commutative.

From any concept and property involving the fact that certain elements [or functions of elements] commute, one may derive new concepts and properties by substituting everywhere n-commutativity for the requirement of plain commutativity. This general principle may be illustrated by the following examples.

n-abelian groups are groups G such that $(xy)^n = x^n y^n$ for every x and y in G. They have first been discussed by F. Levi [3]; and they will play an important rôle in our discussion. Grün [2] has introduced the n-commutator subgroup. It is the smallest normal subgroup J of G such that G/J is n-abelian; and J may be generated by the totality of elements of the form $(xy)^n(x^n y^n)^{-1}$ with x and y in G. Dual to the n-commutator subgroup is the n-center. It is the totality of elements z in G such that $(xz)^n = z^n x^n$ and $(xz)^n = x^n z^n$ for every x in G; see Baer [1] for a discussion of this concept.

Received by the editors May 1, 1952.