CONTINUOUS WHICH ARE THE SUM OF A FINITE NUMBER OF INDECOMPOSABLE CONTINUA

C. E. BURGESS

Swingle [7] has given the following definitions. (1) A continuum \(M \) is said to be the \textit{finished sum} of the continua of a collection \(G \) if \(G^* = M \) and no continuum of \(G \) is a subset of the sum of the others.\(^2\) (2) If \(n \) is a positive integer, the continuum \(M \) is said to be \textit{indecomposable under index} \(n \) if \(M \) is the finished sum of \(n \) continua and is not the finished sum of \(n+1 \) continua.

Swingle has shown [7, Theorem 2] that if \(n \) is a positive integer and the continuum \(M \) is indecomposable under index \(n \), then \(M \) is the finished sum of \(n \) indecomposable continua. The author has shown [2, Theorem 1] that if \(n = 2 \) and the continuum \(M \) is indecomposable under index \(n \), and \(G \) is a collection of \(n \) indecomposable continua whose finished sum is \(M \), then \(G \) is the only such collection. In the present paper, it is shown that for a compact continuum, this theorem holds for any positive integer \(n \). Also, there is given a necessary and sufficient condition that a compact continuum be indecomposable under index \(n \).

An indecomposable continuum can be described as a nondegenerate continuum which is indecomposable under index 1. If \(n = 1 \), then in order that a continuum \(M \) be indecomposable under index \(n \), it is necessary and sufficient that \(M \) contain \(n+2 \) points such that \(M \) is irreducible about any \(n+1 \) of them.\(^3\) Swingle [7] has shown that it is impossible, in a certain manner, to generalize this theorem. Theorem 3 of the present paper might be considered a generalization of the necessary condition of the above theorem. However, it is easily seen that the converse of Theorem 3 is not true.

Theorems 1–5 are proved on the basis of R. L. Moore's Axioms 0 and 1. Hence these theorems hold in any metric space.\(^4\)

Theorem 1. If \(n > 1 \) and the compact continuum \(M \) is the sum of \(n \) indecomposable continua \(M_1, M_2, \ldots, M_n \) such that, for each \(i (1 \leq i \leq n) \), a composant \(^6\) \(K_i \) of \(M_i \) does not intersect \(M_1 + M_2 + \cdots + M_{i-1} \)

Presented to the Society, September 2, 1952; received by the editors May 24, 1952.

\(^1\) Numbers in brackets refer to the bibliography at the end of this paper.

\(^2\) The sum of the continua of \(G \) is denoted by \(G^* \).

\(^3\) For a proof of this theorem, see [4, Theorem IV].

\(^4\) Moore's axioms are stated in [5]. The first three parts of Axiom 1 are denoted by Axiom 1.

\(^6\) If \(P \) is a point of a continuum \(M \), the set of all points \(X \) such that \(P + X \) lies in a proper subcontinuum of \(M \) is called a composant of \(M \).
+ M_{i+1} + \cdots + M_n$, then M is indecomposable under index n.

Proof. Suppose that there is a collection G consisting of $n+1$ continua whose finished sum is M. No continuum of G is a proper subset of one of the indecomposable continua M_1, M_2, \ldots, M_n. Hence, for each i ($i \leq n$), if K_i intersects a continuum X of G, then X contains M_i. Consequently, there exist n continua of G such that their sum is M. This is contrary to the supposition that M is the finished sum of the continua of G. Since M is the finished sum of the continua M_1, M_2, \ldots, M_n, then it is indecomposable under index n.

Theorem 2. If n is a positive integer and the compact continuum M is indecomposable under index n, then there is only one collection of indecomposable continua whose finished sum is M.

Proof. By [7, Theorem 2], there is a collection G consisting of n indecomposable continua M_1, M_2, \ldots, M_n such that M is their finished sum. By [3, Theorem 1], for each i ($i \leq n$), some composant K_i of M_i does not intersect $(G - M_i)^*$. Suppose that there is a collection G' of indecomposable continua such that $G' \neq G$ and M is the finished sum of the continua of G'. Let i be a positive integer not greater than n. Some continuum X_i of G' intersects K_i. Neither of the indecomposable continua X_i and M_i is a proper subset of the other. Since no proper subcontinuum of M_i intersects both K_i and $(G - M_i)^*$, then $X_i = M_i$. Hence $G' = G$.

Theorem 3. If $n > 1$ and the compact continuum M is indecomposable under index n, then there is a subset H of M consisting of $2n$ points such that M is irreducible about every subset of H consisting of $2n - 1$ points.

Proof. Let M_1, M_2, \ldots, M_n be n indecomposable continua whose finished sum is M. For each i ($i \leq n$), let K_i be a composant of M_i as described in the proof of Theorem 2. There exists a subset H of M such that for each i ($i \leq n$), $H \cdot M_i$ consists of two points of K_i. The set H satisfies the requirements of the conclusion of Theorem 3.

Theorem 4. If $n > 1$, M is a compact continuum, G is a collection consisting of n indecomposable continua whose finished sum is M, and H is a finite set of points about which M is irreducible, then M is indecomposable under index n.

Lemma 4.1. If the hypothesis of Theorem 4 is satisfied, X is a continuum of G, and T is a component of $(G - X)^*$, then some composant of X does not intersect T.
Proof of Lemma 4.1. Suppose that every composant of X intersects T. Then there exists a finite collection W of proper subcontinua of X such that $W^* + (G - X)^*$ is connected. There exists a finite collection Y of proper subcontinua of X such that (1) every continuum of Y intersects $(G - X)^*$ and (2) if X intersects H, then Y^* contains $X \cdot H$. Since X is indecomposable and M is the finished sum of the continua of G, then $Y^* + W^*$ does not contain $M - (G - X)^*$. Therefore, $W^* + Y^* + (G - X)^*$ is a proper subcontinuum of M containing H. This is a contradiction since M is irreducible about H.

Proof of Theorem 4. An inductive argument will be used. Suppose that Theorem 4 is not true. Let k be the smallest positive integer n such that if M is a compact continuum satisfying the hypothesis of Theorem 4, then M is not indecomposable under index n. By Theorem 1, there is a continuum X of G such that every composant of X intersects $(G - X)^*$. By Lemma 4.1, $(G - X)^*$ is not connected. Therefore, $k > 2$. The set $(G - X)^*$ is the sum of a finite number of mutually exclusive continua. Let T be one of these continua. Since M is irreducible about H, then $T - T \cdot X$ contains a point of H. By Lemma 4.1, there is a composant of X which does not intersect T. Let P be a point of such a composant. The continuum $T + X$ is irreducible about the finite set $H \cdot T + P$. There is a positive integer j less than k such that $T + X$ is the finished sum of j continua of G. Then $T + X$ is indecomposable under index j. By [3, Theorem 1], every continuum of G which is a subset of $T + X$ contains a composant which does not intersect any other continuum of G which is a subset of $T + X$. Therefore, every continuum of $G - X$ contains a composant which does not intersect any other continuum of G. Let L be a collection consisting of $k - 1$ points such that if Z is a continuum of $G - X$, then a point of L belongs to a composant of Z lying in $M - (G - Z)^*$. Since, by supposition, M is not indecomposable under index k, then there is a collection G' consisting of $k + 1$ continua whose finished sum is M. Since the set L is contained in the sum of $k - 1$ continua of G', then $(G - X)^*$ is contained in the sum of $k - 1$ continua of G'. Hence there exist two continua X_1 and X_2 of G' such that each of them contains a point of $M - (G - X)^*$ which does not belong to any other continuum of G'. Let R be a domain intersecting X_1 and not intersecting $(G' - X_1)^* + (G - X)^*$. Every composant of X intersects R. Therefore, there exists a finite collection W of proper sub-

* This follows from the fact that every proper subcontinuum of an indecomposable continuum M is a continuum of condensation of M [4, Theorem II] and the fact that no indecomposable continuum is the sum of a finite number of its proper subcontinua [4, Theorem III].
continua of \(X \) such that \(X_1 + W* + (G-X)* \) is a continuum. Let \(Y \)
be a finite collection of continua as described in the proof of Lemma
4.1. Since \(X_1 + Y* + W* + (G-X)* \) is a subcontinuum of \(M \) contain-
ing \(H \), then \(X_1 + Y* + W* + (G-X)* = M \). Since \(X \) is indecomposable
and \(X_1 + (G-X)* \) contains \(X-(Y*+W*) \), then \(X_1 + (G-X)* \) contains
\(X \). This is impossible since \(X_1 + (G-X)* \) does not contain \(X_2 \). Thus
the supposition that Theorem 4 is not true has led to a contradiction.

Theorem 5. If \(n > 1 \), then in order that the compact continuum \(M \)
should be indecomposable under index \(n \), it is necessary and sufficient
that \(M \) should be the finished sum of \(n \) indecomposable continua and be
irreducible about some \(n \) points.\(^7\)

The necessity follows from [7, Theorem 2] and [3, Theorem 2].
The sufficiency follows from Theorem 4.

Theorem 6. If the compact continuum \(M \) in the plane is the finished
sum of two indecomposable continua \(H \) and \(K \) such that some compositant
of \(H \) does not intersect \(K \), then \(M \) is indecomposable under index two.

Lemma 6.1. If the hypothesis of Theorem 6 is satisfied and \(K_1 \) and \(K_2 \)
are mutually exclusive simple discs\(^8\) intersecting \(K \) but not \(H \), then there
do not exist four mutually exclusive continua \(W_1, W_2, W_3, \) and \(W_4 \)
such that, for each \(i \) \((i \leq 4)\), \(W_i \) belongs to \(K \), intersects \(H \), and is ir-
reducible from \(K_1 \) to \(K_2 \).

Proof of Lemma 6.1. Suppose that there do exist four such
continua. Let \(D \) denote the complementary domain of \(K_1+K_2 \).
Consider the case in which \(W_3+W_4 \) separates \(W_1 \) from \(W_2 \) in \(D \). Let
\(R_1 \) and \(R_2 \) be connected domains intersecting \(H \cdot W_1 \) and \(H \cdot W_2 \)
respectively and not intersecting \(K_1+K_2+W_3+W_4 \). There is a com-
positant \(L \) of \(H \) which intersects both \(R_1 \) and \(R_2 \) and lies in \(M-K \). Then
\(L \) intersects \(K_1+K_2+W_3+W_4 \). This is a contradiction since \(M-K \)
do not intersect \(K_1+K_2+W_3+W_4 \).

Proof of Theorem 6. Suppose, on the contrary, that \(M \) is the
finished sum of three continua \(M_1, M_2, \) and \(M_3 \). One of these three
continua intersects a compositant of \(H \) lying in \(M-K \). Suppose that
\(M_1 \) is such a continuum. Then it contains \(H \) and intersects each of

\(^7\) For an example showing that this theorem does not hold true without the condi-
tion that \(M \) be irreducible about some \(n \) points, see [1, p. 540]. Also, see [2, Example
1]. Sorgenfrey [6] has proved a theorem giving a necessary and sufficient condition
that a compact continuum be irreducible about some \(n \) points.

\(^8\) In the plane, a simple closed curve together with its interior is called a simple
disc.
the continua M_2 and M_3. Each of the continua M_3 and $M_1 + M_2$
contains a point of K not belonging to the other of these two con-
tinua. Since the closure of $M - (M_1 + M_2)$ is a proper subset of the
indecomposable continuum K, then $M - (M_1 + M_2)$ is not connected.
Let T_1 and T_2 be two mutually separated sets whose sum is M
$- (M_1 + M_2)$. Let K_1 and K_2 be two mutually exclusive simple discs
whose interiors intersect T_1 and T_2 respectively such that K_1 and
K_2 do not intersect $T_2 + M_1 + M_2$ and $T_1 + M_1 + M_2$ respectively.
Since every composant of K intersects both K_1 and K_2, there exist
six distinct composants of K each of which contains a continuum ir-
reducible from K_1 to K_2. By Lemma 6.1, at most three of these inter-
sect H, and hence three do not. Denote three which do not by W_1,
W_2, and W_3. Let D denote the complementary domain of $K_1 + K_2$.
There exist two of the continua W_1, W_2, and W_3 such that their sum
separates the other one from H in D. Consider the case in which
$W_1 + W_3$ separates W_2 from H in D. Let I denote the complementary
domain of $K_1 + K_2 + W_1 + W_2$ which contains the connected set
$W_2 - W_2 \cdot (K_1 + K_2)$. Since one of the sets $K_1 \cdot W_1$ and $K_2 \cdot W_2$
belongs to T_1 and the other to T_2, then $I \cdot W_2$ contains a point of the continuum
$M_1 + M_2$. Since H is a subset of $M_1 + M_2$ and does not intersect I,
then there is a continuum Z belonging to $I \cdot (M_1 + M_2)$ and intersecting
both W_2 and $W_1 + W_3$. But this is impossible since Z is a proper sub-
continuum of K intersecting two composants of K. Thus the sup-
position that M is the finished sum of three continua has led to a
contradiction.

Theorem 7. If the hypothesis of Theorem 6 is satisfied, then un-
countably many composants of K lie in $M - H$.

This theorem follows from Theorem 6 and [3, Theorem 1].

Remark. Neither Theorem 6 nor Theorem 7 holds true in Euclidean
three-dimensional space. Let H' be the point set obtained by translat-
ing the point set H of [2, Example 1] one-half unit to the left. Let H''
be a point set obtained by revolving H' through 90 degrees about
the vertical line whose equation is $x = 1/2$. Only one composant of H''
intersects H, but every composant of H intersects H''. It follows from
[3, Theorem 1] and Theorem 2 that the continuum $H + H''$ is not
indecomposable under index two.

Added in proof. I have recently observed that Theorem 6 follows
from Theorem 1 and a lemma proved by N. E. Rutt [Some theorems
on triodic continua, Amer. J. Math. vol. 56 (1934) pp. 122–132
Lemma 1]. I regret that I was not aware of Rutt's lemma at the time
I prepared this paper.
BIBLIOGRAPHY

THE UNIVERSITY OF UTAH