MINIMIZING OPERATORS ON SUBREGIONS

LEO SARIO

For constructing harmonic functions with a prescribed local behavior, an operator method on arbitrary Riemann surfaces was recently introduced by the author [1]. We showed the existence of a normal linear operator minimizing the Dirichlet integral and referred to other operators to be given later. In the present paper, a general class of minimizing operators will be introduced, including the above operator as a special case. In the existence proof, use will be made of the extremal method presented in [2].

Let \(R \) be an arbitrary Riemann surface and \(G \) a subregion, compact or not, of finite or infinite genus, relatively bounded by a finite set \(\alpha \) of closed analytic Jordan curves. Let \(v \) be a real single-valued function on \(\alpha \), harmonic in an open set containing \(\alpha \). A normal linear operator \(L \) in \(G \) is defined [1] as follows. With every \(v \) on \(\alpha \) is associated, by \(L \), a unique single-valued harmonic function \(Lv \) on \(G \) which satisfies the following conditions:

1. \(Lv = v \) on \(\alpha \),
2. \(\min_{\alpha} v \leq Lv \leq \max_{\alpha} v \) on \(G \),
3. \(\int_{\alpha} dLv = 0 \),
4. \(L(c_1v_1 + c_2v_2) = c_1Lv_1 + c_2Lv_2 \).

Here \(Lv \) is the harmonic conjugate function of \(Lv \).

Denote by \(\{u\} \) the class of single-valued harmonic functions \(u \) in \(G \) with

5. \(u = v \) on \(\alpha \), \(\int_{\alpha} d\bar{u} = 0 \).

Let \(\beta \) be the ideal boundary of \(G \), that is, the common part of the boundaries of \(R \) and \(G \). If \(G \) is noncompact (\(\beta \) is not empty), we form an exhaustion \(\{G_n\} \) of \(G \) by domains \(G_n \), bounded by \(\alpha \) and a finite set \(\beta_n \) of closed analytic Jordan curves. The boundary integral \(\int_{\beta_n} u \, d\bar{u} \) is defined as the limit of integrals taken along the curves \(\beta_n \).

Received by the editors June 30, 1952.

1 This investigation was carried out under the partial sponsorship of the Office of Ordnance Research, Contract DA-034-ORD-639 RD.

350
These integrals increase monotonically with \(n \), for the Dirichlet integral of \(u \) over \(G_{n+1} - G_n \) is non-negative. If \(G \) is compact (\(\beta \) is empty), the boundary integral is understood to vanish for all \(u \). Let \(\lambda \) be a real parameter ranging in the interval \((- 1, 1)\).

Theorem 1. There is a uniquely determined function \(u_\lambda \) in \(G \) which minimizes the value of the functional

\[
m_\lambda(u) = \int_\beta u \, d\alpha + \lambda \int_\alpha u \, d\alpha
\]

among all functions of the class \(\{ u \} \). The function \(u_\lambda \) is associated with \(v \) by a normal linear operator \(L_\lambda \),

\[
u_\lambda = L_\lambda v.
\]

Proof. If \(G \) is compact, \(\{ u \} \) reduces to one single function and the theorem is trivial. In the sequel we assume that \(G \) is not compact. Suppose first that \(\beta \) consists of a finite number of closed analytic Jordan curves. Let \(u_1 \) and \(u_{-1} \) be the functions of class \(\{ u \} \) determined by

\[
u_1 = k = \text{const. on } \beta,
\]

\[
\partial u_{-1}/\partial n = 0 \text{ on } \beta
\]

where \(\partial/\partial n \) is the normal derivative. Write

\[
u_\lambda = \frac{1 + \lambda}{2} u_1 + \frac{1 - \lambda}{2} u_{-1},
\]

and set \(u - u_\lambda = h \). By \(h = 0 \) on \(\alpha \), we have

\[
m_\lambda(u) = \int_\beta u_\lambda \, d\alpha + \lambda \int_\alpha u_\lambda \, d\alpha + \int_\beta -a h \, d\alpha
\]

\[+ \int_\beta u_\lambda \, d\alpha + \lambda \int_\alpha u_\lambda \, d\alpha + \int_\beta -a h \, d\alpha,
\]

In view of the Green's formula

\[
\int_\beta -a h \, d\alpha = \int_\beta -a u_\lambda \, d\alpha,
\]

the sum of the three latter integrals may be written

\[
2 \int_\beta u_\lambda \, d\alpha + (\lambda - 1) \int_\alpha u_\lambda \, d\alpha.
\]
Substituting (10) in this and making use of (5), this reduces further to
\[
(1 - \lambda) \int_{\beta_a} u_{-1} d\bar{h} = (1 - \lambda) \int_{\beta_a} h d\bar{u}_{-1} = 0.
\]
Consequently,
\[
(11) \quad m_\lambda(u) = m_\lambda(u_\lambda) + D(u - u_\lambda),
\]
which shows that \(m_\lambda(u)\) is minimized by \(u_\lambda\). By (8) and (9), the functions \(u_1\) and \(u_{-1}\) are associated with \(v\) by a normal linear operator. The same is, therefore, true for \(u_\lambda\). This proves the theorem for the special \(\beta\) under consideration.

Now let \(\beta\) be arbitrary. Denote by \(u_{\lambda_n}\) the harmonic function in \(G_n\) which minimizes the value of
\[
m_{\lambda_n}(u) = \int_{\beta_n} u d\bar{u} + \lambda \int_{\alpha} u d\bar{u}
\]
among functions of the class \(\{u\}\) in \(G_n\). By (2), the functions \(u_{\lambda_n}\) are uniformly bounded, and a subsequence, say again \(\{u_{\lambda_n}\}\), converges uniformly in every closed subdomain of \(G\) towards a harmonic function \(u_\lambda\) on \(G\) with \(u_\lambda = v\) on \(\alpha\). In view of the harmonic boundary values and Schwarz's reflexion principle, the convergence is uniform even in a domain slightly extended across \(\alpha\). This implies that \(\text{grad } u_{\lambda_n}\) converges uniformly on \(\alpha\).

Since \(\int_{\alpha} u_{\lambda_n} d\bar{u}_{\lambda_n}\) increases with \(n(\leq m)\), it follows from the minimum property of \(u_{\lambda_n}\) that
\[
m_{\lambda_n}(u_{\lambda_n}) \leq m_{\lambda}(u_{\lambda_{n+1}}(u_{\lambda_{n+1}})).
\]
Similarly, for \(u\) in \(G\),
\[
m_{\lambda_n}(u_{\lambda_n}) \leq m_\lambda(u).
\]
As this holds for every \(n\) and every \(u\) in \(G\), we have
\[
\lim_{n \to \infty} m_{\lambda_n}(u_{\lambda_n}) \leq \inf m_\lambda(u) \leq m_\lambda(u_\lambda).
\]
Since, on the other hand,
\[
m_\lambda(u_\lambda) = \lim m_{\lambda_n}(u_\lambda) = \lim \lim m_{\lambda_n}(u_{\lambda_m}) \leq \lim m_{\lambda_m}(u_{\lambda_m}),
\]
it follows that
\[
(12) \quad m_\lambda(u_\lambda) = \min m_\lambda(u) = \lim m_{\lambda_n}(u_{\lambda_n}).
\]
This minimum property implies that, for a real \(\epsilon\),
\[m_\lambda(u_\lambda + \epsilon h) = m_\lambda(u_\lambda) + \epsilon \left[\int_\beta (u_\lambda d\bar{h} + h d\bar{u}_\lambda) + \lambda \int_\alpha (u_\lambda d\bar{h} + h d\bar{u}_\lambda) \right] + \epsilon^2 D(h). \]

The expression in brackets vanishes, since otherwise, for sufficiently small \(|\epsilon|\), the deviation of \(m_\lambda(u_\lambda + \epsilon h)\) from \(m_\lambda(u_\lambda)\) would change its sign with \(\epsilon\), contrary to the minimum property of \(u_\lambda\). For \(\epsilon = 1\), it follows that

\[m_\lambda(u) = m_\lambda(u_\lambda) + D(u - u_\lambda). \]

This guarantees the uniqueness of \(u_\lambda\). In fact, let \(u'\) and \(u''\) be two minimizing functions. Then

\[m_\lambda(u'') = m_\lambda(u') = m_\lambda(u'') + D(u' - u'') \]

which implies \(u' - u'' = \text{const.} = 0\). In particular, the sequence \(u_n\), not only a subsequence, converges.

Since \(u_n = L_n v\) satisfies the conditions (1)-(4) in \(G_n\), it follows from the uniform convergence that \(L_n\), defined by

\[u_n = L_n v, \]

is a normal linear operator for \(G\). This completes the proof of Theorem 1.

We consider now the subclass \(\{u^0\}\) of \(\{u\}\), defined by the restriction \(\int d\bar{u}^0 = 0\) along all dividing cycles.

Theorem 2. There is a normal linear operator \(L^0_\lambda\) associating with \(v\) on \(\alpha\) a unique harmonic function

\[\theta \]

\[u_\lambda = L^0_\lambda v \]

on \(G\) which minimizes the value

\[m_\lambda(u^0) = \int_\beta u^0 d\bar{u}^0 + \lambda \int_\alpha u^0 d\bar{u}^0 \]

among all functions of the class \(\{u^0\}\).

Proof. In the proof of Theorem 1, replace \(u_1\) by \(u_1^0 \subseteq \{u^0\}\), defined by

\[u_1^0 = k_{n_1} = \text{const. on } \beta_{n_1}, \]

where \(\beta_{n_1}\) are the closed curves constituting \(\beta_n\). Write \(u_{-1}^0 = u_{-1}\) and replace \(u_\lambda\) by \(u^0_\lambda\), respectively. Then nothing in the previous proof
will be changed if the exhaustion \(\{ G_\alpha \} \) is (as is always possible) chosen so that each \(\beta_\alpha \) is a dividing cycle.

We now apply the operators introduced above to existence problems on the Riemann surface \(R \), on which the subregion \(G \) was considered. In \(R - \alpha \), let \(s \) be a single-valued real function, harmonic near \(\alpha \), both branches of which can be continued harmonically across \(\alpha \). Let \(L \) be a normal linear operator in \(R - \alpha \). The following theorem was proved in \([1]\). If \(\int d\bar{s} \) vanishes, when extended along both edges of \(\alpha \) for respective branches of \(s \), then, and only then, there exists on the whole surface \(R \) a function \(p \), harmonic on \(\alpha \) and such that \(p - s = L(p - s) \) in each of the disjoint regions constituting \(R - \alpha \). For \(L = L_\lambda \) (or \(L_0^* \)) this gives, in particular:

Theorem 3. On an arbitrary Riemann surface \(R \), let \(D \) be a compact region, bounded by a finite set \(\alpha \) of closed analytic Jordan curves. In \(D \), let \(s \) be a single-valued real function, harmonic on \(\alpha \). The condition

\[
\int_a d\bar{s} = 0
\]

is necessary and sufficient for the existence of a single-valued function \(p_\lambda \) (or \(p_0^* \)) on \(R \) such that

1. \(p_\lambda - s \) is harmonic on \(\overline{D} \),
2. \(p_\lambda \) is harmonic on \(R - D \),
3. the value of the functional

\[
m_\lambda(u) = \int_\beta ud\bar{u} + \lambda \int_\alpha ud\bar{u}
\]

is minimized by \(u = p_\lambda \) among all functions of the class \(\{ u \} \) (or \(\{ u^0 \} \)) in \(R - D \) with the boundary values \(p_\lambda \) on \(\alpha \).

The proof is furnished by the theorem quoted above, selecting \(s \equiv 0 \) in \(R - \overline{D} \).

Note that, for \(\lambda = -1 \), the operator \(L_\lambda \) is the special operator introduced in \([1]\) (denoted there by \(L_0 \)) which minimizes the Dirichlet integral. For \(\lambda = 1 \), \(L_\lambda \) minimizes \(\int_{\beta - \alpha} ud\bar{u} \), furnishing the function of Lemma 1 in \([4]\). For \(\lambda = 0 \), \(\int_{\beta} ud\bar{u} \) is minimized by \(L_\lambda \), the mean of the two above operators. Necessary and sufficient conditions, given in \([1]\) for the existence of certain harmonic and analytic functions, are valid in terms of any of the operators \(L_\lambda \).

The functions \(p_0^* - 1 \) and \(p_0^* \), corresponding to the operators \(L_0^* - 1 \) and \(L_0^* \) and to \(s = \text{Re} \left(\frac{1}{z} \right) \), are the real parts of functions mapping a planar surface onto the horizontal or vertical slit domains, respec-
tively. The functions f^0 have application to related mapping problems.

A survey of the linear operator method and the extremal method, to which this investigation is related, was given in [3].

References

Stanford University