REAL-VALUED FUNCTIONS ON PARTIALLY ORDERED SETS
SEYMOUR GINSBURG

It is known that if P is a partially ordered set, then P can be imbedded into an everywhere branching partially ordered set Q in such a manner that if a function has a limit L on P, the function can be extended to Q and have a limit L on Q.\(^1\) The purpose of this note is to show that P can be imbedded isomorphically into an everywhere branching partially ordered set Q and each function f on P extended to Q, in such a manner that f has a limit L on P if and only if it has a limit L on Q.\(^2\)

By a partially ordered set is meant a set of elements $P = \{p\}$, with a binary relation "≤" which has the three properties:

1. $p ≤ p$ for each element p of P;
2. if $p_1 ≤ p_2$ and $p_2 ≤ p_3$, then $p_1 ≤ p_3$; and
3. if $p_1 ≤ p_2$ and $p_2 ≤ p_1$, then $p_1 = p_2$ (identity).

As usual, "$p_1 < p_2$" will mean that $p_1 ≤ p_2$, but p_1 is not identical with p_2. An element p_0 of P is called a minimal (maximal) element of P if there is no element p of P for which $p < p_0$ ($p > p_0$). The only partially ordered sets which are considered hereafter are those which have no minimal elements. A partially ordered set is directed if, for each pair of elements in P, p_1 and p_2, an element p_3 can be found for which $p_1 ≤ p_3$, $i = 1, 2$. A partially ordered set is everywhere branching if, to each element p_i of P, there corresponds a pair of elements p_2 and p_3 such that $p_i ≤ p_2$, $i = 1, 2, 3$, and

$$\{p \mid p ≤ p_2\} \cap \{p \mid p ≤ p_3\} = \emptyset$$

where \emptyset is the empty set. A subset $Q = \{q\}$ of P is a coinitial subset of P if to each element p in P, there corresponds an element q in Q such that $q ≤ p$. $Q = \{q\}$ is a residual subset of P if, for each element q in Q, $\{p \mid p ≤ q, p ∈ P\}$ is a subset of Q.

A single, real-valued function f defined on a partially ordered set $P = \{p\}$ has a limit L if, to each element p_0 of P, and $\epsilon > 0$, there corresponds an element $p_1(p_0, \epsilon)$ of P such that $p_1 ≤ p_0$ and $|f(p) - L| < \epsilon$ for $p ≤ p_1$.\(^3\)

\(^2\) The author wishes to thank the referee for his general suggestions, particularly in the simplification of the proof of Theorem 1.

\(^3\) See Alaoglu and, Birkhoff, General ergodic theorems, Ann. of Math. vol. 41 (1940) pp. 293–309.
A single, real-valued function \(f \) defined on a partially ordered set \(P \) has a partial limit \(L \) on \(P \) if, for some residual subset \(Q \) of \(P \), the function \(f \), considered as a function on \(Q \), has a limit \(L \).

Theorem 1. A partially ordered set \(P = \{ p \} \) may be imbedded into an everywhere branching partially ordered set \(Q = \{ q \} \) by an isomorphism \(g \). Furthermore, a function \(h \) of \(Q \) onto \(g(P) \) can be found which has the following two properties:

1. \(h[g(p)] = g(p) \) for each \(p \) in \(P \); and
2. \(f \) being any real function on \(P \), then the function \(f_* \), which is defined by (a) \(f_*[g(p)] = f(p) \) for \(p \) in \(P \), and (b) \(f_*[g(q)] = f_*[h(q)] \) for \(q \) in \(Q \), has a limit \(L \) on \(Q \) if and only if \(f \) has a limit \(L \) on \(P \).

Proof. For each \(p \) in \(P \) let \(g(p) = \{ x \mid x \leq p, x \in P \} \). Let

\[Q = \{ q \mid q \text{ is a coinitial subset of } g(p), p \in P \}, \]

and order the elements of \(Q \) by set inclusion. To see that \(Q \) is an everywhere branching partially ordered set, well order the elements of \(P \) into a sequence, say \(\{ r_\xi \}, \xi < \gamma \). A simply ordered subset \(A = \{ a \} \) of a partially ordered set \(B = \{ b \} \) shall be called a path (in \(B \)) if there is no element \(b_0 \) of \(B \) such that \(b_0 \leq a \) for each element \(a \) in \(A \). Clearly, if \(b_0 \) is any element of \(B \), then there exists a path in \(B \),

\[a_0 > a_1 > \cdots > a_\xi > \cdots \]

Now let \(q = \{ y \} \) be any element of \(Q \). Let \(y_0^0 \) be the first element of \(q \) and

\[y_0^0 > y_1^0 > \cdots > y_\xi^0 > \cdots \]

be any path \(Z_0 \) in \(q \) for which \(y_\xi^0 \) is a maximal element. This is possible since \(q \) is a partially ordered set with no minimal element. Denote by \(A_0 \) the set

\[A_0 = \{ y \mid y \in q, y \preceq y_0^0, y_\xi^0 \in Z_0 \}. \]

We continue by transfinite induction. Suppose that the paths \(Z_\mu \) and the sets \(A_\mu \) have been defined for \(\mu < \lambda \). Let \(y_0^\lambda \) be the first element of \(q - \bigcup_{\mu < \lambda} A_\mu \). Let

\[y_0^\lambda > y_1^\lambda > \cdots > y_\xi^\lambda > \cdots \]

be any path \(Z_\lambda \) in \(q \) for which \(y_\xi^\lambda \) is a maximal element. This is possible since \(q - \bigcup_{\mu < \lambda} A_\mu \) is a partially ordered set with no minimal element.

4 A mapping \(g \) of a partially ordered set \((P, \leq^1) \) into a partially ordered set \((Q, \leq^2) \) is an isomorphism if \(g \) is one-to-one, and \(p_1 \leq^1 p_2 \) if and only if \(g(p_1) \leq^2 g(p_2) \).
Denote by A_λ the set

$$A_\lambda = \{ y \mid y \in q, y \preceq y_0^\lambda, y_0^\lambda \in Z_\lambda \}.$$

Consider the two subsets of q

$$q_1 = \{ y_{\alpha+2n} \mid \alpha = 0 \text{ or a limit number, } \lambda \text{ any ordinal} \}$$

and

$$q_2 = \{ y_{\alpha+3n} \mid \alpha = 0 \text{ or a limit number, } \lambda \text{ any ordinal} \}.$$

Each of the two sets are coinitial in q. Therefore q_1 and q_2 are elements of Q.

Let g be the function which takes each point p of P into the element $g(p)$ of Q. Clearly g is an isomorphism of P into Q. Let h be the function which is defined by: (1) $h(q) = g(p_0)$ if p_0 is the unique maximal element of q; and (2) $h(q) = g(p_0)$, where p_0 is the first element of q, if q has no unique maximal element. If f is a real function on P, then denote by f_* the function which is defined by $f_*(g(p)) = f(p)$ for p in P, and $f_*(q) = f_*(h(q))$.

Suppose that f_* has a limit L on Q. For any element p_0 of P, and $\epsilon > 0$, denote by $E_*(p_0)$ the set

$$E_*(p_0) = \{ p \mid p \preceq p_0 \text{ and } |f(p) - L| \geq \epsilon \}.$$

If $E_*(p_0)$ were to be a coinitial subset of $g(p_0)$, then the relation $|f_*(g(q)) - L| \geq \epsilon$ would be true for all $q \leq E_*(p_0)$. But this would contradict the function f_* having a limit L on Q. Therefore $E_*(p_0)$ is not a coinitial subset of $g(p_0)$. Consequently, for some element p_1 of $g(p_0)$, i.e., $p_1 \preceq p_0$, we have $\{ p \mid p \preceq p_1 \} \cap E_*(p_0) = \emptyset$. Hence $|f(p) - L| < \epsilon$ for $p \preceq p_1$. Thus f has a limit L on P.

Now suppose that the function f has a limit L on P. Let q_0 be any element of Q, and $\epsilon > 0$. Let p_0 be any element of q_0. For some element p_1 of P, where $p_1 \preceq p_0$, we have $|f(p) - L| < \epsilon$ for $p \preceq p_1$. If $q_1 = \{ p \mid p \preceq p_1, p \in q_0 \}$, then q_1 is a coinitial subset of $g(p_1)$. Thus q_1 is an element of Q. If $q \preceq q_1$, then $|f_*(g(q)) - L| < \epsilon$. Therefore the function f_* has a limit L on Q.

When the partially ordered set P is directed, one can study the behavior on a coinitial subset of P of a real function f defined on P, by inspecting the everywhere branching partially ordered set Q and the function f_* which are obtained from the previous theorem. Specifically we have

Theorem 2. Let P be a directed partially ordered set and f a real function defined on it. Let Q and f_* be the same as in Theorem 1.
Then a necessary and sufficient condition that f have a limit L on some coinitial subset q of P is that f_* have a partial limit L on Q.

Proof. The necessity is trivial. Consider the sufficiency. Let Z be a residual subset of Q on which f_* has a limit L. Let q_0 be an element of Z. q_0 is a coinitial subset of P. Let $\epsilon > 0$ and p_0 be any element of q_0. Let

$$q_1 = \{ p \mid p \leq p_0, p \in q_0 \}.$$

Suppose that for each point p_1 of q_1, a point p_2 of q_1, where $p_2 \leq p_1$, can be found so that $|f(p_2) - L| \geq \epsilon$. Since P is directed, and thus also q_0 and q_1,

$$q_2 = \{ p \mid p \in q_1, |f(p) - L| \geq \epsilon \}$$

is a coinitial subset of P. Furthermore, $|f_*(q) - L| \geq \epsilon$ for $q \leq q_1$. Thus f_* cannot have the limit L on Z. From this contradiction we see that for some $p_1 \leq p_0$, $|f(p) - L| < \epsilon$ for $p \leq p_1$. Consequently f has the limit L on q_0.

University of Miami