ON THE SEPARATION OF SPECTRA

KENNETH G. WOLFSON

Let a positive \(p(t) \) and a real-valued \(q(t) \), where \(-\infty < t < \infty\), be continuous functions with the property that the differential equation

\[
(p x')' + (q + \lambda)x = 0
\]

is of the "limit point" type for both \(t = -\infty \) and \(t = \infty \). Then (1) determines a boundary value problem in the Hilbert space \(L^2(-\infty, \infty) \); that is, \(L(z) = -(pz')' - qz \) is a self-adjoint operator defined on the set of functions \(z(t) \) for which \(z, pz' \) are absolutely continuous; and \(z, L(z) \) are of class \(L^2(-\infty, \infty) \). Let the spectrum of this operator be denoted by \(S \) and its derived set by \(S' \). The assumptions above also imply that (1) and a boundary condition

\[
x(0) = 0
\]

determine two boundary value problems, one in each of the Hilbert spaces \(L^2(-\infty, 0) \) and \(L^2(0, \infty) \). Let \(S_1 \) and \(S_2 \) denote the spectra of the respective problems. Then the following theorem will be proved:

Let \(\lambda' \) and \(\lambda'' \) be a pair of points contained in one of the sets \(S, S_1 + S_2 \). Then the other set contains at least one point in the closed interval \([\lambda', \lambda''] \).

Proof. Since it has been shown \([1, p. 714]\) that \(S' = S'_1 + S'_2 \), it is necessary to consider only the cases when \(\lambda', \lambda'' \) are isolated points of the point spectrum. It may also be assumed that \(\lambda' = -\lambda, \lambda'' = \lambda \) for the addition of the constant \((\lambda' + \lambda'')/2 \) to \(q(t) \) simultaneously translates the sets \(S, S_1, S_2 \) by \(-(\lambda' + \lambda'')/2 \).

Assume firstly that \(-\lambda, \lambda \) are isolated points of \(S_2 \) and let \(x_1, x_2 \) be the corresponding eigenfunctions. Put

\[
z(t) = c_1 x_1 + c_2 x_2 \quad \text{or} \quad z(t) = 0
\]

according as \(0 \leq t < \infty \) or \(-\infty < t < 0\), where \(c_1, c_2 \) are chosen so that \(z'(-0) = 0 \). Also choose the normalization \(\int_{-\infty}^{\infty} z^2 \, dt = 1 \). Then \(z \) is in the domain of the operator \(L(z) \). Thus

\[
\int_{-\infty}^{\infty} L^2(z) \, dt = \lambda^2 \int_{0}^{\infty} (c_1 x_1 - c_2 x_2)^2 \, dt = \lambda^2 \int_{-\infty}^{\infty} z^2 \, dt = \lambda^2
\]
in view of the orthogonality of \(x_1, x_2 \) on \((0, \infty) \). But if \([-\lambda, \lambda]\) is

Presented to the Society, April 25, 1953; received by the editors October 20, 1952.

408
free of points of S the spectral resolution of the operator $L(z)$ implies

$$\int_{-\infty}^{\infty} L^2(z)dt > \lambda^2 \int_{-\infty}^{\infty} z^2 dt = \lambda^2$$

which contradicts (4) and shows that S contains a point in $[-\lambda, \lambda]$.

Clearly the same proof applies if $-\lambda, \lambda$ are points of S_1. Now let $-\lambda \in S_1$ and $\lambda \in S_2$ where y_1, y_2 are corresponding eigenfunctions. In this case put

$$z(t) = c_1 y_1 \quad \text{or} \quad z(t) = c_2 y_2$$

according as $-\infty < t \leq 0$ or $0 \leq t < \infty$, where c_1, c_2 are chosen so that $c_1 y_1'(0) = c_2 y_2'(0)$. Then $z(t)$ is in the domain of the operator $L(z)$, and

$$\int_{-\infty}^{\infty} L^2(z)dt = \lambda^2 \int_{-\infty}^{\infty} z^2 dt$$

which again implies that the interval $[-\lambda, \lambda]$ contains a point of S.

Finally if $-\lambda, \lambda$ are points of S and w_1, w_2 are corresponding eigenfunctions, put

$$z(t) = c_1 w_1 + c_2 w_2$$

for $-\infty < t < \infty$, where c_1, c_2 are chosen so that $z(0) = 0$. Then z is in the domain of the operators which determine the sets S_1, S_2. Now, if we assume that the interval $[-\lambda, \lambda]$ contains no points of either S_1 or S_2, the spectral theorem applied to the operators determining these two sets yields a contradiction as before. This completes the proof.

Reference

Rutgers University