THE FUNDAMENTAL GROUP OF THE PRINCIPAL COMPONENT OF A COMMUTATIVE BANACH ALGEBRA

EDWARD K. BLUM

We consider an arbitrary commutative Banach algebra over the complex numbers. Let B denote the algebra, $\{a, b, c, x, y, z, \ldots \}$ its elements, and $\{\lambda, \mu, \nu, \ldots \}$ complex numbers. We assume that B contains a unit element, e, with $\|e\| = 1$.

If a^{-1} exists ($aa^{-1} = e$), the element a is called "regular." The set of regular elements will be denoted by G. It is well known that (1) G is a topological group relative to multiplication and (2) G is an open subset of B. Since G is open, it is a union of maximal open connected sets, its components. We call the component G_1 containing the unit e the "principal component" [1]. It is easy to see that G_1 is a subgroup of G.

The function $\exp(x) = e + \sum_1^\infty \frac{x^n}{n!}$ is defined for all x in B and has the usual properties of the classical exponential function. If we let $\pi_1(G_1)$ denote the fundamental group of G_1, we may state our main result as follows:

Theorem 1. Let $P = \{x | \exp(x) = e\}$. P is an additive group which is isomorphic to $\pi_1(G_1)$.

We shall give a complete proof based on Schreier's theory of the universal covering group and then we shall outline a second proof which depends only on results from the theory of Banach algebras.\(^2\)

The result of Schreier which we shall use may be stated as follows [2]:

Theorem. Let B be a simply-connected, locally-connected and locally simply-connected topological group. If P is a discrete normal subgroup of B, then the fundamental group of the topological space B/P is isomorphic to the group P.

The algebra B, regarded as an additive group with the metric topology of the norm, clearly satisfies the hypotheses of Schreier's

\(^1\) This result is contained in the author's doctoral dissertation, *The theory of analytic functions in Banach algebras*, completed in June 1952 under E. R. Lorch at Columbia University.

\(^2\) The second proof is the one used in the author's dissertation. It was later pointed out by S. Eilenberg that a different proof is possible if one brings the Schreier theory to bear.

397
theorem. The set \(P = \{ x \mid \exp(x) = e \} \) is obviously a normal subgroup of \(B \) since \(\exp(x - y) = \exp(x) \exp(-y) = [\exp(y)]^{-1} \). Further, \(\exp(x) \) maps \(B \) onto the principal component, \(G_1 \). It is clearly a continuous map. It is also an open mapping since its inverse, \(\log y \), is continuous. Thus, \(\exp(x) \) is an open homomorphism of the additive topological group \(B \) onto the multiplicative topological group \(G_i \). The kernel of this homomorphism is \(P \), so that \(B/P \) is isomorphic to \(G_i \) as topological groups. Hence \(\pi_1(B/P) \) is isomorphic to \(\pi_1(G_i) \). If it can be shown that \(P \) is discrete, the Schreier theorem is applicable and Theorem 1 follows immediately.

To prove \(P \) discrete it suffices to show that \(0 \) is an isolated element of \(P \). Suppose there is a sequence of elements \(\{ z_n \} \) such that \(z_n \in P \), \(z_n \neq 0 \) and \(\lim z_n = 0 \). By a theorem of Lorch [1], this implies that \(z_n = 2\pi i \sum_{j=1}^{k} n_j e_j \), where the \(e_j \) are idempotent elements \((e_j^2 = e_j) \) and the \(n_j \) are rational integers. Furthermore, the spectrum of \(z_n \) consists of the points \(2\pi in_1, \cdots, 2\pi in_k \). However, \(\lim ||z_n|| = 0 \) and, as is well known, the spectrum of \(z_n \) contains no points exterior to the circle of radius \(||z_n|| \), center at the origin. For sufficiently large \(n \), this means that \(n_j = 0 \) for \(j = 1, \cdots, k \); i.e. \(z_n = 0 \). This contradiction completes the proof.

Now we shall indicate a more elementary and constructive proof in which no recourse is had to the Schreier theory.

First we establish a lemma concerning the function \(\exp(x) \).

Lemma: Let \(w = \exp(x) \) and \(0 < \epsilon < 1/||w_0^{-1}|| \). Let

\[
\delta = \sum_{1}^{\infty} \frac{(||w_0^{-1}||\epsilon)^n}{n}
\]

If \(E \) is the set \(\{ w \mid ||w - w_0|| < \epsilon \} \), then for every \(w \) in \(E \) there is an \(x \) such that \(||x - x_0|| < \delta \) and \(\exp(x) = w \).

Proof. Choosing \(w = w_0 + b \) where \(||b|| < \epsilon \), we have \(||w_0^{-1}b|| \leq ||w_0^{-1}|| ||b|| < 1 \). Hence \(w_0^{-1}b \) is in \(G_i \) and there is an element \(c \) in \(B \) such that \(\exp(c) = w_0^{-1}b \). In fact, we may take

\[
c = \sum_{1}^{\infty} (1/n)(c - w_0^{-1}w)^n
\]

so that \(||c|| < \sum_{1}^{\infty} (1/n)(||w_0^{-1}||\epsilon)^n = \delta \). The element \(x = x_0 + c \) satisfies the conclusion of the lemma. It is important to note that \(\delta \) approaches 0 as \(\epsilon \) approaches 0.

Using this lemma, we are able to prove

Theorem 2. Let \(K: \{ f(s), 0 \leq s \leq 1 \} \) be a curve in \(G_i \) joining \(e = f(0) \)
to \(w = f(1) \). There exists an element \(z \) in \(B \) such that \(\exp (z) = w \) and the curve \(K(z) : \{ \exp (tz), 0 \leq t \leq 1 \} \) is homotopic to \(K \) in \(G_1 \).

Proof. If \(z_0 \) is such that \(\exp (z_0) = f(s) \), let \(K(z_0) \) denote the curve \(\{ \exp (tz_0), 0 \leq t \leq 1 \} \). \(K(z_0) \) is a compact set in \(G_1 \). Hence, there is a number \(\rho > 0 \) such that every sphere with center on \(K(z_0) \) and radius \(\rho \) is contained in \(G_1 \). Choose \(\epsilon \) such that \(0 < \epsilon < \min \{ \rho, 1 \} \). There is a number \(\gamma(\epsilon) > 0 \) such that \(\| f(r) - f(s) \| < \epsilon \) whenever \(|r - s| < \gamma(\epsilon) \).

By the lemma, there is an element \(z_r \) such that \(\| z_r - z_s \| < \delta \) and \(\exp (z_r) = f(r) \), where \(\delta = \sum_n (1/n) (\| f(s) \| - \epsilon)^n \), that is, \(z_r = z_s + b \) where \(\| b \| < \delta \).

For all \(t, 0 \leq t \leq 1 \), \(\| \exp (te) - \exp (te_1) \| \leq \| \exp (te) \| \cdot \| \exp (tb) - e \| \leq \sum_0^n (1/n!)(\| e \|_B)^n \cdot \sum_1^n (1/n!)(\| b \|_B)^n \leq \exp \| e \|_B \sum_1^n \delta^n/n! \). By choosing \(\epsilon \) sufficiently small, thereby making \(\delta \) small, we have \(\| \exp (te) - \exp (te_1) \| < \rho \). It follows that \(K(z_0) \) is homotopic in \(G_1 \) to the curve \(K(z_0) \cup K_0^r \) consisting of \(K(z_0) \) followed by the arc \(K_r^r : \{ f(s), 0 \leq s \leq r \} \).

In particular, since \(\exp (0) = f(0) = e \), there is an \(r > 0 \) and an element \(z_r \) such that \(K(z_r) \) is homotopic to the arc \(K_0^r : \{ f(s), 0 \leq s \leq r \} \). The set of all real numbers \(r \) for which this holds has a least upper bound, \(\mu \leq 1 \). Suppose \(\mu < 1 \). We obtain a contradiction.

Let \(\exp (z_r') = f(\mu) \). There is an element \(z_r' \) such that \(K(z_r') \) is homotopic to \(K(z_r') \cup K_0^r, s < \mu \). But there is a \(z_r \) such that \(K(z_r) \) is homotopic to \(K_0^r \). Since \(\exp (z_r') = \exp (z_r) = f(s) \), we have \(z_r = z_r' + c \) where \(\exp (c) = e \). Let \(z_r = z_r' + c \). It is simple to show that \(K(z_r) \) is homotopic to \(K(z_r) \cup K_0^r \), which is, in turn, homotopic to \(K_0^r \cup K_0^r = K_0^r \).

Hence \(K(z_r) \) is homotopic to \(K_0^r \). By the same reasoning, there is a number \(s_1 > \mu \) such that \(K_0^{s_1} \) is homotopic to \(K(z_s) \), contradicting the assumption on \(\mu \). Therefore, \(\mu = 1 \).

The next theorem then follows easily.

Theorem 3. Every closed curve in \(G_1 \) with \(e \) as initial and end point is homotopic in \(G_1 \) to a curve \(K(b) \) of the form \(\{ \exp (tb), 0 \leq t \leq 1, \exp (b) = e \} \). If \(\exp (b') = e \) and \(b \neq b' \), then \(K(b') \) is not homotopic to \(K(b) \). Thus each homotopy class contains precisely one curve of the form \(\{ \exp (tb), 0 \leq t \leq 1 \} \) where \(\exp (b) = e \).

Proof. The first part of the theorem is obtained by choosing any point \(w = f(s) \) on \(K \). By Theorem 2, there is a \(z \) such that \(K(z) \) is homotopic to \(K_0^r \) and a \(z' \) such that \(K(z') \) is homotopic to \(K_0^s \). The element \(b = z' - z \) gives the desired result.

Noting that \(\int_{K(b)} x^{-1} dx = b \) and \(\int_{K(b')} x^{-1} dx = b' \), we see that \(K(b) \) cannot be homotopic to \(K(b') \), for in that event, the integrals would
be equal by the Cauchy integral theorem (by [1] and a result in the author's dissertation not yet published).

Theorem 1 follows directly from Theorem 3.

BIBLIOGRAPHY

COLUMBIA UNIVERSITY AND UNIVERSITY OF MARYLAND

REMARK ON A FORMULA FOR THE BERNOULLI NUMBERS

L. CARLITZ

Some years ago Garabedian [1] proved the following formula:

\[B_{k+1} = \frac{(-1)^{k+1}(k+1)}{2^{k+1} - 1} \sum_{r=0}^{k} (-1)^r \frac{\Delta^r 1^k}{2^{r+1}} \quad (k \geq 0), \]

where the even suffix notation is employed for the Bernoulli numbers. The proof of (1) made use of the sum of a certain divergent series.

We wish to point out that (1) is not new. It can be found (in somewhat different notation) in [3, p. 224, formula (68)].

It may be of interest to give a short proof of (1). We use the formula [2, p. 28]

\[C_k = 2^{k+1}(1 - 2^{k+1}) \frac{B_{k+1}}{k+1}, \]

where the \(C_k \) are the coefficients in the Euler polynomial:

\[E_k(x) = \left(x + \frac{C_k}{2} \right) = \sum_{s=0}^{k} \binom{k}{s} 2^{-s} C_s x^{k-s}. \]

Then in view of

\[E_k(x + 1) + E_k(x) = 2x^k, \]

we have

\[E_k(x) = \left(1 + \frac{1}{2} \Delta \right)^{-1} x^k = \sum_{s=0}^{k} (-1)^s 2^{-s} \Delta^s x^k. \]

Received by the editors September 5, 1952.