THE EXISTENCE OF LINE INVOLUTIONS OF ORDER GREATER THAN THREE POSSESSING A LINEAR COMPLEX OF INVARIANT LINES

C. R. WYLIE, JR.

Introduction. In a recent paper [1] attention was called to a new family of line involutions in \(S_3 \) furnishing examples of involutions of all orders, \(m, \geq 4 \) with complexes of invariant lines of all possible orders, \(i \), from 2 up to the maximum, \([(m+1)/2] \). Since involutions of all orders without a complex of invariant lines are known to exist, and since examples of all possible involutions of order \(<4\) are known, the only involutions for which existence examples remain to be supplied are those whose orders are \(\geq 4 \) and whose invariant lines form a linear complex. It is the purpose of this note to define a class of involutions having these properties, thus establishing the existence of line involutions corresponding to every admissible set of characteristics \((m, n, i, k)\) [1]. In our development we shall work exclusively on the nonsingular \(V^2_4 \) in \(S_5 \) into whose points the lines of \(S_3 \) are mapped in a 1:1 way by the well known interpretation of the Plücker coordinates of a line in \(S_4 \) as point coordinates in \(S_5 \).

1. The definition of the involution. On \(V^2_4 \) let there be given a point \(O \) and a plane \(\pi \) in general position, and let \(\lambda \) be the line in which the tangent hyperplane to \(V^2_4 \) at \(O \) meets \(\pi \). Moreover, let \(C_\alpha \) be a curve of order \(\alpha \) lying on \(V^2_4 \) and meeting \(\pi \) in \(\alpha - 1 \) points, \(\beta \) of which fall on the line \(\lambda \). Obviously \(C_\alpha \) lies in an \(S_4 \) and is rational. Finally let \(\Gamma \) be the set of points on \(V^2_4 \) which represents a general linear complex of lines in \(S_4 \); in other words, \(\Gamma \) is the intersection of \(V^2_4 \) and a general \(S_4 \).

Now if \(P \) is a general point of \(V^2_4 \) (the image of a general line in \(S_4 \)), then \(PO\pi \) is a 4-space which meets \(C_\alpha \) in the \(\alpha - 1 \) fixed points common to \(C_\alpha \) and \(\pi \), and in one additional point \(Q \) which varies with \(P \). The point \(Q \) will of course coincide with one of the fixed intersections of \(C_\alpha \) and \(\pi \) if and only if \(PO\pi \) is a 4-space which contains the tangent to \(C_\alpha \) at one of these intersections. Thus, there is a unique plane \(\sigma = POQ \) which passes through \(P \) and \(O \), meets \(\pi \) (since it lies in an \(S_4 \) with \(\pi \)), and intersects \(C_\alpha \) in a point distinct (in general) from the \(\alpha - 1 \) intersections of \(C_\alpha \) and \(\pi \). Now \(\sigma \) meets \(V^2_4 \) in a conic, \(\gamma \), and this conic meets the given linear complex \(\Gamma \) in two points, say \(M \) and \(N \). Finally, \(P \) (which of course lies on \(\gamma \)) has a unique harmonic con-
jugate, P', with respect to M and N on the conic γ. We consider the transformation that takes P to P'; this is obviously involutory. If P is distinct from M and N, i.e., if P is not in the linear complex Γ, then P and P' are necessarily distinct, and so P cannot be invariant. On the other hand, if P is in Γ, then on γ, P coincides either with M or with N and, from the elementary properties of harmonic ranges, P' must coincide with P, i.e., P is an invariant point. Hence, the points of Γ, and only those points, are invariant. Thus, the involution has a linear complex of invariant elements, as desired, and it remains to determine the order, m, of the involution and verify that it can take on any value ≥ 4.

2. The order of the involution. To determine m it is convenient to solve first for the number, k, of points on a general line l of V_4^δ which are singular, i.e. have the property that the line PP' lies entirely on V_4^δ. Then we can find m at once from the formula $m = k + 2i - 1$ of [1]; in fact, since $i = 1$ in the present case, $m = k + 1$.

To find k we observe first that the line joining a point P to its image P' will lie entirely on V_4^δ if and only if the plane σ determined by P meets V_4^δ in a conic consisting of a pair of lines. Moreover, when this is the case, one of the lines must pass through O.

Now consider a general line l on V_4^δ. From the nature of the involution it is evident that the points of l are in 1:1 correspondence with the points of C_{a}. On l there are three and only three classes of points for which σ meets V_4^δ in a pair of lines. These arise respectively when the line of V_4^δ which passes through O in σ:

1. meets l,
2. meets C_{a},
3. meets π in a point distinct from any of the β intersections of λ and C_{a}.

In Case 1, the singular point, L, on l is unique, being in fact the intersection of l and the S_{a} which is tangent to V_4^δ at O.

In Case 2, we note that the S_{a} which is tangent to V_4^δ at O meets C_{a} in α points, consisting of the β points $Q_{j}^{(1)}$ common to C_{a} and λ, and $\alpha - \beta$ additional points, $Q_{j}^{(0)}$, which are not in π. The line joining each of these points to O obviously lies entirely on V_4^δ. Now π and the line joining O to any of the $\alpha - \beta$ points $Q_{j}^{(0)}$ determine an S_{a} which meets l in a point, say $L_{j}^{(0)}$. Similarly, π, the line joining O to any one of the β points $Q_{j}^{(1)}$, and the tangent to C_{a} at $Q_{j}^{(0)}$, determine an S_{a} which meets l in a point, say $L_{j}^{(0)}$. Any of the points $L_{j}^{(1)}$ and $L_{j}^{(0)}$ determine with O and the corresponding point $Q_{j}^{(1)}$ or $Q_{j}^{(0)}$ a plane σ which passes through O, meets C_{a} and π, and intersects V_4^δ in a com-
posite conic. Moreover, the $L_j^{(1)}$ and $L_j^{(2)}$ are clearly all distinct, and different from the point L obtained in Case 1. Thus the $L_j^{(1)}$ and $L_j^{(2)}$ constitute α additional singular points on l.

Finally, in Case 3, there is a unique plane of V_4^2 passing through O and meeting π in a line, namely the plane of $\sigma\lambda$. This plane and l determine an S_4 which meets C_α in α points, R_j, including the β intersections of C_α and λ which we have already taken into account, and hence now reject. In this S_4, the 3-space lOR_j meets λ in a point, say G_j. Moreover, since l and the plane $\sigma = OR_jG_j$ lie in the same 3-space, σ meets l in a point, say L_j. Since σ clearly passes through O, meets l, C_α, and π, and intersects V_4^2 in a composite conic (consisting of the lines OG_j and L_jR_j) the points L_j are also singular points on l. Further, it is clear that the L_j are all distinct and different from L and any of the points $L_j^{(1)}$ and $L_j^{(2)}$. Hence they constitute $\alpha - \beta$ additional singular points in the set of singular points on l which we are enumerating.

Therefore, on l we have altogether

$$k = 1 + \alpha + (\alpha - \beta) = 2\alpha + \beta + 1$$

singular points. Hence, the order of the involution is

$$m = k + 1 = 2\alpha + \beta + 2 \quad (\beta \leq \alpha - 1).$$

Thus beginning with $\alpha = 1$ and $\beta = 0$ we can obtain involutions of all orders ≥ 4 possessing linear complexes of invariant elements.

Reference

The University of Utah