SOLUTION OF BERNSTEIN'S APPROXIMATION PROBLEM

HARRY POLLARD

In his famous monograph on approximation theory [2], S. Bernstein initiated the study of the closure properties of sets of functions \(\{u^nK(u)\}_{n=0}^\infty \) on the real line. It is supposed that \(K(u) \) is continuous on \((-\infty, \infty)\) and that \(u^nK(u) \) vanishes at \(u = \pm \infty \) for each value of \(n \). The problem is to decide when the set \(\{u^nK(u)\} \) is fundamental in the space \(C_0 \) of functions continuous on \((-\infty, \infty)\), vanishing at \(\pm \infty \), and normed by \(\|f\| = \max |f(u)| \). So far no necessary and sufficient conditions have been given. A recent paper of Carleson [3] reviews most of the known results, but the paper [1] which seems to come closest to the true conditions has been overlooked.

It is the purpose of this note to give a complete solution. It applies to either real- or complex-valued functions and may be read either way.

THEOREM. In order that \(\{u^nK(u)\}_{n=0}^\infty \) be fundamental in \(C_0 \) it is necessary and sufficient that

\[
(1) \quad K(u) \neq 0, \quad -\infty < u < \infty;
\]

\[
(2) \quad \int_{-\infty}^{\infty} \frac{\log |K(u)|}{1 + u^2} \, du = -\infty;
\]

and that there exists a sequence of polynomials \(p_n \) such that

\[
(3) \quad \lim_{n \to \infty} p_n(u)K(u) = 1; \quad |p_n(u)K(u)| \leq C, \quad -\infty < u < \infty.
\]

1. The necessity. The necessity of (1) is obvious and of (2) is well known [1; 3]. To prove the necessity of the remaining conditions let \(0_n(u) \) denote the continuous function which is unity on \((-n, n)\), vanishes outside \((-n-1, n+1)\), and is linear in the remaining in-

Presented to the Society, April 25, 1953; received by the editors April 2, 1953.

1 Research supported in part by a grant from the Office of Naval Research.
tervals. Since \(\{u^*K(u)\} \) is fundamental there exists for each \(n \) a polynomial \(p_n \) such that
\[
| p_n(u)K(u) - 0_n(u) | \leq 2^{-n}.
\]
Now let \(n \to \infty \) and (3) follows.

2. A lemma. To prove the sufficiency we shall need the following result.

Lemma. Let \(\alpha(x) \) be of bounded variation on \((-\infty, \infty)\). Then the functions
\[
F_\pm(x) = \alpha'(x) \pm \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{d\alpha(u)}{x - u}
\]
exist almost everywhere when the integral is interpreted as a principal value. Moreover
\[
(2.1) \quad \int_{-\infty}^{\infty} \frac{\log |F_\pm(z)|}{1 + x^2} dz < \infty
\]
for at least one choice of the \(\pm \) sign, unless \(\alpha \) is substantially a constant.

The first part of the theorem follows from a result of Loomis [4] on Hilbert transforms. Note that (2.1) is the same for either choice of sign if \(\alpha \) is real, so that the complication comes from the possibility that it is complex-valued.

To establish (2.1) consider the function
\[
H(z) = \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{d\alpha(u)}{z - u}, \quad z = x + iy.
\]
\(H(z) \) is analytic for \(y > 0 \) and for \(y < 0 \). It cannot be identically zero in both half-planes unless \(\alpha \) is substantially a constant. Ruling out this case, we may assume \(H \neq 0 \) in one of these half-planes, say \(y > 0 \). We shall establish (2.1) with the + sign.

Now \(H = U+iV \), where \(U(x, y) \) and \(V(x, y) \) are defined by
\[
U(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{d\alpha(u)}{(x - u)^2 + y^2}
\]
and
\[
V(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(x - u)d\alpha(u)}{(x - u)^2 + y^2}.
\]
Since
it follows from Schwarz's inequality that
\[\int_{-\infty}^{\infty} \left| \frac{U(x, y)}{1 + x^2} \right| dx \leq C < \infty. \]

As for \(V(x, y) \), an argument used by Titchmarsh [6, pp. 144–145] shows that
\[\int_{-\infty}^{\infty} \left| \frac{V(x, y)}{1 + x^2} \right| dx \leq C < \infty. \]
(Titchmarsh proves this when \(\alpha \) is an integral, but his argument is quite general.) Consequently
\[\int_{-\infty}^{\infty} \left| \frac{H(x + iy)}{1 + x^2} \right| dx \leq C < \infty. \]

Map the half-plane \(\Im z > 0 \) into the unit circle \(|w| < 1 \) by \(z = i(1 - w)/(1 + w) \). If we write \(w = re^{\theta}, \ h(w) = H(z) \), then \(d\theta = 2(1 + x^2)^{-1} dx \) and the preceding formula becomes
\[\int_{0}^{2\pi} \left| h(re^{i\theta}) \right|^{1/2} d\theta \leq C < \infty, \quad 0 \leq r < 1. \]

A standard argument (see, for example, [5, pp. 19–20]) shows that
\[\int_{0}^{2\pi} \left| \log \left| h(re^{i\theta}) \right| \right| d\theta \leq C < \infty. \]

Since \(h \) is of class \(H^{1/2} \) the limit \(h(e^{i\theta}) = \lim_{r \to 1} h(re^{i\theta}) \) exists almost everywhere. Hence by Fatou’s lemma
\[\int_{0}^{2\pi} \left| \log \left| h(e^{i\theta}) \right| \right| d\theta \leq C < \infty. \]

Mapping back, we get
\[\int_{-\infty}^{\infty} \left| \frac{\log \left| H(x + i0) \right|}{1 + x^2} \right| dx < \infty. \]

It remains only to identify \(H(x + i0) \) with \(F_{+}(x) \). This amounts to showing that almost everywhere
\[\lim_{r \to 0^{+}} U(x, y) = \alpha'(x), \]
Each of these is well known if α is absolutely continuous [6, Chap. V]. It is therefore enough to prove them when α is singular, that is, when $\alpha'(x) = 0$ almost everywhere. We shall prove only the second, (2.2), the argument for the first being similar and easier. For simplicity in printing we also write "$y \to 0+$" for "$y \to 0$".

Let x_0 be a point for which $\int_{-\infty}^{\infty} \frac{d\alpha(u)}{u - x}$ exists and for which $\alpha'(x_0) = 0$. This is true for almost all x_0. By a change of variable we may assume $x_0 = 0$ and (2.2) becomes

$$
\lim_{y \to 0+} \int_{-\infty}^{\infty} \frac{u \alpha(u)}{u^2 + y^2} = \int_{-\infty}^{\infty} \frac{d\alpha(u)}{u}.
$$

Clearly it is enough to show that

$$
\lim_{y \to 0+} \int_{0}^{\infty} \frac{u \alpha(u)}{u^2 + y^2} - \int_{-\infty}^{0} \frac{d\alpha(u)}{u} = 0,
$$

We confine ourselves to (2.3).

In (2.3) replace α by $\beta = \alpha - \alpha(0)$ and integrate by parts. Since $\beta'(0) = 0$, (2.3) reduces to

$$
\lim_{y \to 0+} \left\{- \int_{0}^{\infty} \beta(u) \frac{u}{u^2 + y^2} du - \int_{y}^{\infty} \frac{\beta(u)}{u^2} du \right\} = 0.
$$

Because $\beta(u) = o(u)$, $u \to 0$, we have

$$
\int_{0}^{y} \beta(u) \frac{u}{u^2 + y^2} du = o(1), \quad y \to 0,
$$

and the problem is further reduced to showing that

$$
\int_{y}^{\infty} \beta(u) \left\{ \frac{u}{(u^2 + y^2)} + \frac{1}{u^3} \right\} du = o(1), \quad y \to 0.
$$

The last integral, after a change of variable, is

$$
\int_{1}^{\infty} \frac{\beta(yu)}{yu} \left\{ \frac{d}{du} \frac{u}{u^2 + 1} + \frac{1}{u^3} \right\} du,
$$

which is dominated by
Because β is bounded, $\beta(0) = 0$, and $\beta'(0) = 0$, the expression $\beta(yu)/yu$ approaches zero boundedly on $1 \leq u < \infty$ as $y \to 0$. Consequently the preceding expression converges to zero with y, and the proof is complete.

3. The sufficiency. Assume that (1), (2), (3) hold. Suppose that

$$\int_{-\infty}^{\infty} u^n K(u) d\sigma(u) = 0, \quad n = 0, 1, \ldots,$$

where σ is of bounded variation. We must show that σ is substantially a constant.

If it is not we may form the function

$$s(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d\sigma(u)}{x - u}$$

and conclude from the lemma that for some choice of the \pm sign

$$\int_{-\infty}^{\infty} \left| \log \left| \frac{\sigma'(x) \pm is(x)}{1 + x^2} \right| \right| dx < \infty.$$

Since $K(u) \neq 0$, a similar remark applies to the function

$$g(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{K(u) d\sigma(u)}{x - u}$$

and we have

$$\int_{-\infty}^{\infty} \left| \log \left| \frac{K(x) \sigma'(x) \pm ig(x)}{1 + x^2} \right| \right| dx < \infty.$$

It is important to know that we may choose the same sign in both (3.2) and (3.3). According to the proof of the lemma we can do this if the functions

$$S(z) = \int_{-\infty}^{\infty} \frac{d\sigma(u)}{z - u}, \quad G(z) = \int_{-\infty}^{\infty} \frac{K(u) d\sigma(u)}{z - u}$$

have a common half-plane, $\gamma > 0$ or $\gamma < 0$, in which neither is identically zero. The identity

$$\frac{1}{z - u} = \frac{1}{z} + \frac{u}{z^2} + \cdots + \frac{u^{n-1}}{z^n} + \frac{u^n}{z^n(z - u)}$$
and (3.1) enable us to rewrite $G(z)$ as

$$ G(z) = \frac{1}{z^n} \int_{-\infty}^{\infty} \frac{u^n K(u) d\sigma(u)}{z - u}. $$

Consequently for each polynomial p_n of (3) we have

$$ p_n(z) G(z) = \int_{-\infty}^{\infty} \frac{p_n(u) K(u)}{z - u} d\sigma(u). $$

Since z is not real, (3) enables us to conclude that

$$(3.5) \quad \lim_{n \to \infty} p_n(z) G(z) = S(z).$$

Now $S(z)$ is not identically zero in at least one of the half-planes, say $y > 0$. Hence, by (3.5), $G(z)$ cannot vanish there identically either. We may therefore assume that both (3.2) and (3.3) are valid with the + sign.

In the identity (3.4) replace z by x. The resulting formula and (3.1) enable us to rewrite $g(x)$ as

$$ g(x) = \frac{1}{x^n} \int_{-\infty}^{\infty} \frac{u^n K(u) d\sigma(u)}{x - u}, $$

so that

$$ p_n(x) g(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{p_n(u) K(u)}{x - u} d\sigma(u) $$

and

$$ p_n(x) g(x) - s(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{p_n(u) K(u) - 1}{x - u} d\sigma(u). $$

By another result of Loomis [4] the measure of the set for which $|p_n(x) g(x) - s(x)| > \epsilon$ is at most

$$ \frac{A}{\epsilon} \int_{-\infty}^{\infty} \left| p_n(u) K(u) - 1 \right| d\sigma(u), $$

where A is an absolute constant. In view of (3) this approaches zero as $n \to \infty$. Hence $p_n(x) g(x)$ converges to $s(x)$ in measure, so that a subsequence converges almost everywhere to $s(x)$. By (3), $p_n(x)$ converges to $1/K(x)$. Therefore

$$ g(x) = K(x) s(x) $$

for almost all x. From this identity we obtain
K(x) = \frac{K(x)\sigma'(x) + ig(x)}{\sigma'(x) + is(x)}.

Note that by (3.2) and (3.3) neither the numerator nor the denominator can vanish on a set of positive measure. Moreover by these same results

\int_{-\infty}^{\infty} \frac{\log |K(x)|}{1 + x^2} \, dx < \infty,

which contradicts hypothesis (2).

Therefore \sigma must be substantially a constant, and the proof is complete.

References

The Institute for Advanced Study