MINIMAL SETS OF VISIBILITY

F. A. VALENTINE

Let S be a set in an n-dimensional Euclidean space, E_n. The following concept was used by Horn and Valentine [2] in their study of L sets, and it provides the basis of this investigation.

Definition 1. A set $V \subset S$ is a set of visibility in S if, given any point $p \in S$, there exists a point $q \in V$ such that the closed segment $pq \subset S$.

Notation. Given a point $x \in S$, let $V(x)$ denote a continuum 1 of visibility in S which contains x. The notation $V_1(x)$ will also be used.

Definition 2. The set $V(x)$ is a minimal continuum of visibility in S relative to x if, for any other continuum of visibility $V(x)$, we have $V(x) \subseteq V_1(x)$.

A corresponding definition holds if we replace the word "continuum" by the words "compact convex set."

It is our purpose to investigate sets for which $V(x)$ is unique for each $x \in S$. The most interesting result is contained in Theorem 2. The corresponding theory in which maximal convex sets are considered has been developed by Strauss and Valentine [3]. The two theories are decidedly different, and this difference is explained at the end of this article.

1. **Minimal compact connected sets of visibility.**

Theorem 1. Let S be a closed set in E_n. Suppose each point $x \in S$ is contained in a unique minimal continuum of visibility $V(x)$ in S. Then either S is convex or the product $\prod_{x \in S} V(x)$ is a nonempty continuum. (Both conclusions hold if and only if S is a single point.)

Proof. In this and later proofs we denote the line joining x and y by $L(x, y)$.

Suppose there exists two sets $V(x)$ and $V(y)$ such that $V(x) \cdot V(y) = 0$. By Definition 1 there exists a point $q \in V(x)$ such that $yq \subset S$. Let z be the point of $V(x) \cdot yq$ which is nearest to y. The uniqueness of $V(z)$ implies that $V(z) \subset V(x)$ and that $V(z) \subset yz + V(y)$. Since $V(x) \cdot V(y) = 0$, the uniqueness of $V(z)$ together with $V(x) \cdot yz = z$ imply that $V(z) = z$. Hence if $V(x) \cdot V(y) = 0$, S is starlike 2 with respect to z.

Hence, if $V(x) \cdot V(y) = 0$, since $V(y)$ is unique, we have $V(y) = yu$

Received by the editors February 24, 1953.

1 A continuum is a compact connected set.

2 A set S is starlike if there exists a point $x \in S$ such that $V(x) = x$.

917
$918 \text{ F. A. VALENTINE} \quad [\text{December}$

Since from the uniqueness of $V(u)$ we have $V(u) \subset u$, and $V(u) \subset u y$, then $V(u) = u$. If $S \subset L(y, z)$, then clearly S is convex. If $S \subset L(y, z)$, choose any point $w \in S - L(y, z)$. Since $V(x) = z$, $V(u) = u$, we have $V(w) \subset w$, $V(w) \subset w u$. Hence $V(w) = w$. By the same token if $p \in L(y, z) - S$, then $V(p) \subset p w$, $V(p) \subset p z$, whence $V(p) = p$. Thus for any point $a \in S$, we have $V(a) = a$. Hence, if $V(x) \cdot V(y) = 0$, the set S is convex.

Now, assume S is not convex. Hence, for any $x \in S$, $y \in S$, we must have $V(x) \cdot V(y) \neq 0$. Choose $a \in V(x) \cdot V(y)$. Since $V(x) \subset V(x)$, $V(y) \subset V(y)$, we have $V(a) \subset V(x) \cdot V(y)$. Since for any set $V(a)$ we have $V(a) \cdot V(z) \neq 0$, it follows that $V(a) \cdot V(x) \cdot V(y) \neq 0$. By a simple induction it follows that every finite collection of the sets $\{ V(x), x \in S \}$ has a nonempty intersection. Hence, by the usual compactness argument, we have $\prod_{x \in S} V(x) \neq 0$, if S is not convex.

Finally, to prove $\prod_{x \in S} V(x)$ is connected if S is not convex, we first prove $V(x) \cdot V(y)$ is connected. Suppose this were not so, and let K_1 and K_2 be two components of $V(x) \cdot V(y)$. Since K_1 and K_2 are each connected closed sets of visibility in S, each contains a minimal closed connected set of visibility. Hence, as proved above, we must have $K_1 \cdot K_2 \neq 0$ if S is not convex. The fact that $\prod_{x \in S} V(x)$ is connected follows by a simple induction together with the fact that if every finite subcollection of a collection of continua have a connected intersection, then they all have a connected intersection. This completes the proof of Theorem 1.

2. Minimal compact convex sets of visibility. In this section we confine ourselves to sets $S \subset E_2$.

Lemma 1. Let S be a compact set in E_2. Suppose each point $x \in S$ is contained in a unique minimal closed convex set of visibility $V(x)$ in S. Then S is simply connected.3

Proof. Suppose S is not simply-connected, and let K be a bounded component of the complement of S. Let $H(K)$ be the convex hull of K, where \overline{K} is the closure of K. Let $B(H)$ denote the boundary of $H(K)$. There exists a point $x \in B(H)$ such that a unique line of support L to $H(K)$ at x exists. If $x \in \overline{K}$, let $x = y$. If $x \notin \overline{K}$, let L_1 be the line through x perpendicular to L, and let y be the point of $L_1 \cdot \overline{K}$ which is nearest to x. Since $H(K)$ is bounded, there exists a unique line of support L^* to $H(K)$ which is parallel to L, and distinct from L. Clearly since K is an open connected set, $y \cdot L^* = 0$. Let $L^* \cdot \overline{K} = G$.

3 A set in E_4 is simply-connected if each component of its complement is unbounded.
To prove that \(G \) is a single point, suppose there exist two points \(u \in G, v \in G \). Let \(a \) be any point between \(u \) and \(v \) on \(L^* \), and let \(L(a) \) be the line through a perpendicular to \(L^* \). Let \(b \) be the point of \(K \cdot L(a) \) which is nearest to \(a \). The line segment of \(S \) which joins \(b \) to a point of \(V(y) \) and the segment \(ab \) (degenerate or not) violates the connectedness of \(K \), since \(u \) and \(v \) are limit points of \(K \). Hence, \(L^* \cdot K = L^* \cdot B(H) = p \), a point of \(S \). Moreover, the line \(L^* \) is not a unique line of support to \(H(K) \) at \(p \), otherwise \(V(y) \) would not be visible from \(p \).

Now, let \(L_i \) be a sequence of parallel lines between \(L \) and \(L^* \) such that \(L_i \rightarrow L^* \) as \(i \rightarrow \infty \). Choose \(r_i \in L_i \cdot B(K) \), \(s_i \in L_i \cdot B(K) \) such that the segment \(r_i s_i \) contains the set \(L_i \cdot K \), and such that in terms of a direction on \(L, L^* \), and \(L_i \) we have \(r_i < s_i \) on \(L_i \). Due to the position of the point \(y \), defined above, the visibility of \(V(r_i) \) and \(V(s_i) \) implies that \(V(r_i) \) and \(V(s_i) \) must intersect \(L \) on opposite sides of \(x \) relative to \(L \). In fact, \(V(r_i) \cdot L \) and \(V(s_i) \cdot L \) have the same order on \(L \) as \(r_i \) and \(s_i \) have on \(L_i \). Since \(L^* \cdot B(H) = p \in S \), it follows that \(r_i \rightarrow p, s_i \rightarrow p \) as \(i \rightarrow \infty \). Each of the collections \(\{ V(r_i) \} \) and \(\{ V(s_i) \} \) contains a convergent subsequence which converges to a closed convex set of visibility \(V_r \) and \(V_s \) respectively, with \(p \in V_r, p \in V_s \). Let \(R_+ \) be the closed half-plane bounded by \(L^* \) which does not contain the point \(x \). Since \(V_r \cdot L \neq 0, V_s \cdot L \neq 0 \), with \(x \) between \(V_r \cdot L \) and \(V_s \cdot L \), and since \(p \in B(K) \), it follows that \(V_r \cdot V_s \subset R_+ \). On account of the uniqueness of \(V(p) \), we have \(V(p) \subset V_r, V(p) \subset V_s \). Hence, \(V(p) \subset V_r \cdot V_s \subset R_+ \). However, due to the position of the point \(y \), there exists no point \(q \in V(p) \) such that \(y q \in S \) (\(K \) is an open connected set). This is a contradiction; hence, \(S \) is simply connected.

Lemma 2. Assume the same hypotheses about \(S \) as in Lemma 1. Suppose there exists two points \(x \) and \(y \) in \(S \) such that \(V(x) \cdot V(y) = 0 \). Then \(S \) is starlike.

Proof. A line \(L \) divides the plane into two closed half-planes, denoted by \(R_+ \) and \(R_- \). A mutually separating line of support to \(V(x) \) and \(V(y) \) is one which is a line of support to each, and one for which either

\[
V(x) \subset R_+, \quad V(y) \subset R_- \quad \text{or} \quad V(x) \subset R_-, \quad V(y) \subset R_+.
\]

If \(V(x) \) and \(V(y) \) are not collinear, there exist two mutually separating lines of support to \(V(x) \) and \(V(y) \), denoted by \(L_1 \) and \(L_2 \). If \(V(x) \) and \(V(y) \) are collinear, then \(L_1 = L_2 \). If \(L_1 \neq L_2 \), let \(p = L_1 \cdot L_2 \). If \(L_1 = L_2 \), choose \(p \in L_1 \) between \(x \) and \(y \), with \(p \in V(x), p \in V(y) \). Let \(r_i \in L_i \cdot V(x), s_i \in L_i \cdot V(y) \) \((i = 1, 2)\). Since \(V(y) \) is a minimal set of visibility,
there exist points \(p_1 \in V(y) \), \(p_2 \in V(y) \) such that \(r_1 p_1 \subset S \), \(r_2 p_2 \subset S \). The quadrilateral \(r_1 p_1 p_2 r_2 \) (degenerate or nondegenerate) may be simple or not, but in any case its sides all belong to \(S \). Since \(L_1 \) and \(L_2 \) are mutually separating lines of support to \(V(x) \) and \(V(y) \), it is easily seen that triangle \(r_1 r_2 p \subset r_1 p_1 p_2 r_2 \). Since, by Lemma 1, \(S \) is simply-connected, we must have triangle \(r_1 r_2 p \subset S \). Hence the convex hull \(H[p + V(x)] \subset S \). In exactly the same manner, we have \(H[p + V(y)] \subset S \). Since \(V(p) \subset H[p + V(x)] \), \(V(p) \subset H[p + V(y)] \), and since \(H[p + V(x)] \cdot H[p + V(y)] = p \), the uniqueness of \(V(p) \) implies \(V(p) = p \), so that \(S \) is starlike.

The following definition is due to Brunn [1].

Definition 3. The set \(K(S) = \{ x \in S, V(x) = x \} \) is called the Kerneigebiet of \(S \). (The set \(S \) is starlike relative to each point of the Kerneigebiet.)

Theorem 2. Let \(S \) be a compact set in \(E_2 \), and suppose each point \(x \in S \) is contained in a unique minimal closed convex set of visibility \(V(x) \) in \(S \). Then either \(S \) is convex or \(S \) is starlike with respect to one and only one point of \(S \). (In other words, the Kerneigebiet \(K(S) \) is either \(S \) or it is a single point of \(S \).)

Proof. Suppose \(S \) is not starlike. Then by Lemma 2, for each pair of points \(x \in S \), \(y \in S \) we have \(V(x) \cdot V(y) \neq 0 \). Then by exactly the same argument as given in Theorem 1, involving the finite intersection property and compactness, we must have \(\prod x \in S V(x) \neq 0 \). But this is a contradiction, since \(\prod x \in S V(x) \subset K(S) \). Hence, \(S \) is starlike. Suppose there exist two distinct points \(a \in K(S) \), \(b \in K(S) \). If \(S \subset L(a, b) \), then \(S \) is a line segment. If \(S \subset S - L(a, b) \), then \(V(x) \subset a \), \(V(x) \subset b \). However, this implies \(V(x) = z \) so that \(z \in K(S) \). Similarly, if \(c \in L(a, b) - a - b \). Then \(V(c) \subset a \), \(V(c) \subset b \). Thus, \(K(S) = S \) if \(a \neq b \). Thus, either \(K(S) = S \) or \(K(S) \) is a single point of \(S \). This completes the proof of Theorem 2.

There exist a variety of interesting examples of the set \(S \) in Theorem 2. For instance, the set consisting of two externally tangent circular disks is a nonconvex one containing interior points.

The corresponding theory for unbounded closed sets \(S \subset E_2 \) offers considerably more difficulty. Although I am able to establish a nontrivial generalization of Theorem 2 when at least one of the sets \(V(x) \) is bounded, the case when all the \(V(x) \) are unbounded remains unsettled.

3. Concluding remarks. In a previous paper [3] Straus and Valentine proved the following theorem.
“Let S be a closed connected set in a finite dimensional linear space, and let R_n be the subspace of minimal dimension which contains S. Then the set S is convex if and only if each point $x \in S$ is contained in a unique maximal convex subset of S of dimension greater than or equal to $n-1$.”

Observe that the notion of visibility is not required in the above uniqueness requirement. This cannot be done for minimal convex sets of visibility since a minimal convex set of S containing a point x is always x. This is the reason the theory in this paper differs essentially from that used by Straus and Valentine.

The generalization of Theorem 2 to E_n ($n > 2$) remains unsettled, and it appears to offer considerable difficulties. Finally, the converse of Theorem 2 is clearly false. For instance, a circular disk together with two outward normals (segments) is an obvious counterexample.

Bibliography

University of California, Los Angeles