A NOTE ON PREHARMONIC FUNCTIONS
A. C. ALLEN AND B. H. MURDOCH

1. Let L be the set of points whose coordinates are rational integers. Let D be a domain, that is to say, an open connected set, and let G be the set $D \cdot L$. A point $P(m, n)$ of G is an interior point if the four points $(m \pm 1, n), (m, n \pm 1)$ contiguous to P belong to G. Otherwise P is a boundary point.

A function $f(m, n)$ defined on G is preharmonic if the value of f at any interior point is the mean of the values of f at the contiguous points, that is to say

$$4f(m, n) = f(m + 1, n) + f(m - 1, n) + f(m, n + 1) + f(m, n - 1).$$

For several decades the subject of preharmonic functions has been considered by many mathematicians, and the connection with harmonic functions has long been known. A recent paper by Heilbronn [1] states a number of theorems which are the analogues of classical theorems for harmonic functions.

In this note we consider functions which are preharmonic and non-negative in the half-plane $m \geq 0$ and prove a representation theorem analogous to that for positive harmonic functions [2], and a theorem which is the analogue of the Phragmén-Lindelöf type theorem for positive harmonic functions [3; 4].

2. We require the following lemmas:

Lemma 1. If $f(m, n)$ is preharmonic on a bounded domain D, then $f(m, n)$ is either constant or attains its maximum and minimum on D on the boundary only.

Lemma 2. If $f(m, n)$ is preharmonic everywhere and satisfies the inequality

$$|f(m, n)| < A \{1 + (|m| + |n|)^k\}$$

for all m, n, where k is a positive integer, then $f(m, n)$ is a polynomial of degree not exceeding k.

Received by the editors April 9, 1952 and, in revised form, April 13, 1953.

1 In what follows, A will always represent a positive nonzero number, independent of the variables in the context.
These lemmas are special cases of Theorems 1 and 6 of Heilbronn's paper.

Lemma 3. The function

\[h(m, n) = \frac{1}{\pi} \int_0^\pi \cos mt \phi^n(t) dt, \]

where \(\phi(t) \) is the smaller root of the equation

\[\phi(t) + \phi^{-1}(t) + 2 \cos t = 4, \]

is preharmonic everywhere with the following properties:

(a) \(h(0, 0) = 1 \),

(b) \(h(m, 0) = 0 \) for \(m \neq 0 \),

(c) \(h(m, n) > 0 \) for \(n > 0 \),

(d) \(\left| h(m, n) - n/\pi(m^2 + n^2) \right| \leq A/n(m^2 + n^2) \) for all \(m \) and positive \(n \).

(a) and (b) follow by inspection. To prove (c), let

\[M(n) = \operatorname{glb}_{0 < \phi < \pi} h(m, n) \]

for \(n \geq 0 \). It is easily seen that \(|\phi(t)| < 1 \) for \(0 < t \leq \pi \) and so \(M(n) \to 0 \) as \(n \to \infty \) and, from the difference equation for preharmonic functions, we have for \(n \geq 1 \)

\[2M(n) \geq M(n + 1) + M(n - 1) \]

and, since \(M(0) = 0 \), the result follows.

It may be verified that \(\phi(t) \) is a positive decreasing function of \(t \) in \((0, \pi) \) with derivatives of all orders there, that

(1) \[\phi'(\pi) = 0, \quad \lim_{t \to 0^+} \phi'(t) = -1, \]

(2) \[\phi(t) = 1 - t + t^2/2 - t^4/12 + O(t^6) \]

as \(t \to 0^+ \), and that there exists a real number \(\eta > 0 \) such that

(3) \[\phi(t) \leq e^{-\eta t} \quad \text{for } 0 \leq t \leq \pi. \]

Integrating by parts twice in the expression for \(h(m, n) \) we have from (1) and the fact that \(\sin m\pi = 0 \)

\[\pi h(m, n) = \frac{n}{m^2} - \frac{n}{m^2} \int_0^\pi \phi^{n-2}(t) \cos mt \left((n - 1) \left[\phi'(t) \right]^2 + \phi(t)\phi''(t) \right) dt, \]

or, adding \(\pi(n^2/m^2)h(m, n) \) to each side,
\[\pi \frac{m^2 + n^2}{m^2} \cdot h(m, n) = \frac{n}{m^2} - \frac{n}{m^2} \int_0^\pi \phi^{n-2}(t) \psi(t) \cos mtdt, \]

where

\[\psi(t) = (n - 1) \left(\phi'(t) \right)^n + n \phi(t) \phi''(t) - n \phi^2(t). \]

From the enunciated properties of \(\phi(t) \) we may easily show that

\[|\psi(t)| < A(n \mid t^2 + t) \]

for \(0 < t \leq \pi \). Thus, by (3), we have for \(n \geq 1 \)

\[\left| \pi \frac{m^2 + n^2}{m^2} \cdot h(m, n) - \frac{n}{m^2} \right| < A \frac{n}{m^2} \int_0^\pi e^{-\pi t} (nt^2 + t) dt \]

\[< \frac{A}{nm^2}, \]

and this completes the proof of Lemma 3.

3. Theorem 1. A necessary and sufficient condition for a function \(f(m, n) \) to be non-negative and preharmonic for \(n \geq 0 \) is that the numbers \(f(m, 0) \{ m = 0, \pm 1, \pm 2, \ldots \} \) should be non-negative and satisfy

\[\sum_{m=-\infty}^{\infty} \frac{f(m, 0)}{1 + m^2} < \infty \]

and that there should exist a non-negative number \(D \) for which

\[f(m, n) = Dn + \sum_{r=-\infty}^{\infty} f(r, 0) h(m - r, n) \]

for \(n \geq 0 \).

Sufficiency. For any large positive \(N \) and \(n > 0 \) we have, from Lemma 3(d),

\[\sum_{r=-N}^{N} f(r, 0) h(m - r, n) < A \sum_{r=-N}^{N} \frac{f(r, 0)n}{(m - r)^2 + n^2} \]

\[< AC(m, n) \sum_{r=-N}^{N} \frac{f(r, 0)}{1 + r^2} \]

where

\[C(m, n) = \text{lub} \frac{n(1 + r^2)}{(m - r)^2 + n^2} \]

and is finite for any fixed \(m, n \). Thus the function defined by (4) is
an absolutely convergent series of non-negative preharmonic functions and, hence, is itself non-negative and preharmonic for \(n \geq 0 \).

Necessity. Let \(R \) be a positive integer and define

\[
 f_R(m, n) = f(m, n) - \sum_{r=-R}^{R} f(r, 0) h(m - r, n).
\]

Evidently \(f_R(m, n) \) is preharmonic in the half-plane \(n \geq 0 \) and also

\[
 f_R(m, n) \geq - \left\{ \max_{|r| \leq R} h(m - r, n) \right\} \sum_{r=-R}^{R} f(r, 0).
\]

From Lemma 3(d) the right-hand side has arbitrarily small modulus for all points \((m, n)\) of the half-plane lying outside a sufficiently large circle with centre at \((0, 0)\). Since, by Lemma 1, a preharmonic function in a finite domain attains its minimum on the boundary and \(f_R(m, n) = 0 \) for \(n = 0 \), it follows that for \(n \geq 0 \), \(f_R(m, n) \geq 0 \). That is to say, for \(n \geq 0 \) we have

\[
 f(m, n) \geq \sum_{r=-R}^{R} f(r, 0) h(m - r, n),
\]

and letting \(R \to \infty \)

\[
 (5) \quad f(m, n) \geq \sum_{r=-\infty}^{\infty} f(r, 0) h(m - r, n).
\]

Next, by Lemma 3(d), there exists a large positive integer \(N \) for which

\[
 h(m, N) > 1/(N^2 + m^2)
\]

for all integers \(m \). Thus we have, from \(5 \),

\[
 f(0, N) \geq \sum_{r=-\infty}^{\infty} f(r, 0) h(-r, N)
\]

\[
 \geq \sum_{r=-\infty}^{\infty} f(r, 0) \frac{1}{r^2 + N^2}
\]

\[
 = \frac{1}{N^2} \sum_{r=-\infty}^{\infty} \frac{f(r, 0)}{1 + r^2}.
\]

This proves that if \(f(m, n) \) is non-negative and preharmonic for \(n \geq 0 \),

\[
 \sum_{r=-\infty}^{\infty} \frac{f(r, 0)}{1 + r^2} < \infty.
\]

If we write
it remains to show that \(f_\infty(m, n) = Dn \) for some non-negative \(D \). Now since the series \(\sum_{\infty} f(r, 0) h(m - r, n) \) is convergent and each term is non-negative and preharmonic for \(n \geq 0 \), \(f_\infty(m, n) \) also is non-negative and preharmonic for \(n \geq 0 \), and, a fortiori, for any integral \(t > 0 \), \(f_\infty(m, n + t) \) is non-negative and preharmonic for \(n \geq 0 \). From what we have just proved above, we have

\[
\sum_{r=-\infty}^{\infty} \frac{f_\infty(r, t)}{1 + r^2} < \infty
\]

and, a fortiori, \(f_\infty(m, t) < K_t(1 + m^2) \), where \(K_t \) is finite for each integral \(t \). Let us assume for the moment that we have shown that

(6) \(f_\infty(m, n) < An^2(1 + m^2) < A [1 + (|m| + |n|)^4] \)

for \(n > 0 \). We may continue \(f_\infty(m, n) \) uniquely throughout the entire plane by writing

(7) \(f_\infty(m, -n) = -f_\infty(m, n) \)

for \(n > 0 \), and have

(i) \(f_\infty(m, n) \) preharmonic everywhere,

(ii) \(f_\infty(m, n) < A [1 + (|m| + |n|)^4] \) everywhere,

(iii) \(f_\infty(m, 0) = 0 \) for all \(m \),

(iv) \(\text{sign } f_\infty(m, n) = \text{sign } n \) for \(n \neq 0 \).

Applying Lemma 2 to \(f_\infty(m, n) \) it follows from (8)(ii) that \(f_\infty(m, n) \) is a polynomial of degree not exceeding 4. From (8)(iii), \(n \) must be a factor of \(f_\infty(m, n) \); since \(f_\infty(m, n) \) by (7) contains only odd powers of \(n \) we must have

\[
f_\infty(m, n) = n\phi(m, n^2),
\]

where \(\phi(m, n^2) \) is a polynomial of degree not exceeding 3. Further, from (8)(iv), \(\phi(m, n^2) \) is everywhere non-negative, and so of degree not exceeding 2. We have now shown that

\[
f_\infty(m, n) = n(\alpha m^2 + \beta n^2 + \gamma m + \delta)
\]

where \(\alpha \) and \(\beta \) are non-negative. It may be verified, from the difference equation, that since \(f_\infty(m, n) \) is preharmonic, then \(\alpha + 3\beta = 0 \). Thus \(\alpha = \beta = 0 \) and this implies that \(\gamma = 0 \) and \(\delta \geq 0 \). This completes the proof that
A NOTE ON PREHARMONIC FUNCTIONS

for some non-negative D.

It remains to prove (6). Consider the function

$$g(m, n, m, 2\bar{n}) = \frac{1}{\bar{n}} \sum_{r=1}^{\infty} \sin \frac{r\pi(m - m + \bar{n})}{2\bar{n}} \cdot \frac{r\pi}{2} \sinh \alpha_r n$$

where α_r is the positive root of the equation

$$\cosh \alpha_r + \cos \frac{r\pi}{2\bar{n}} = 2.$$

This function is preharmonic everywhere2 and may be shown to satisfy

$$g(m, n, m, 2\bar{n}) = \begin{cases}
0 & \text{for } m = m \pm \bar{n}, \\
0 & \text{for } n = 0, \\
0 & \text{for } 1 \leq |m - m| \leq \bar{n}, n = 2\bar{n}, \\
1 & \text{for } m = m, n = 2\bar{n}.
\end{cases}$$

Further,

$$g(\bar{m}, 1, \bar{m}, 2\bar{n}) = \frac{1}{\bar{n}} \sum_{r=1}^{\infty} \sin^2 \frac{r\pi}{2} \frac{\sinh \alpha_r}{2 \sinh 2\alpha_r \bar{n}}$$

$$= \frac{1}{\bar{n}} \frac{\sinh \alpha_1}{\sinh 2\alpha_1 \bar{n}}.$$

From (9) we have

$$\cosh \alpha_r = 2 - \cos \frac{r\pi}{2\bar{n}} < \cosh \frac{r\pi}{2\bar{n}},$$

and so

$$\alpha_r < \frac{r\pi}{2\bar{n}},$$

and substituting this in the inequality for $g(\bar{m}, 1, \bar{m}, 2\bar{n})$ we deduce that

$$g(\bar{m}, 1, \bar{m}, 2\bar{n}) > A/\bar{n}^3.$$

Let us suppose that (6) is not true. Then there exists an increasing sequence of integers $\{n_r\}$, and a corresponding sequence of integers $\{m_r\}$ such that as $r \to \infty$.

2 This method of writing preharmonic functions as a sum of products is due to Phillips and Wiener [5].
We shall suppose first that the integers n_* are even. Consider the function

$$f_\omega(m, n) = f_\omega(m, n) - f_\omega(m, n_*) g(m, n, m, n_*) .$$

From (10) and (11) it is apparent that $f_\omega(m, n) \geq 0$ on the boundary of the square $|m-m_*| \leq n_*, 0 \leq n \leq n_*$, and also, by Lemma 1, inside the square. In particular, we have

$$f_\omega(m, n_*) \geq f_\omega(m, n_*) g(m, n_*, 1, m_*, n_*) ,$$

and so, by (11),

$$f_\omega(m, n_*) < A n_* (1 + m_*^2) ,$$

which contradicts our assumption. Similarly, if the sequence is odd, we may show that

$$f_\omega(m, n_*) < A n_* (1 + m_*^2) .$$

Corollary. Suppose $f(m, n)$ to be preharmonic and non-negative in $n \geq 0$. Then, as $n \to \infty$ subject to the condition $am + bn = 0$ where a and b are integers,

$$f(m, n) - H(m, n) = D n + O \{ (m^2 + n^2)^{-1/2} \} ,$$

where D is a non-negative number and

$$H(m, n) = \frac{1}{\pi} \sum_{n=-\infty}^{\infty} f(r, 0) \cdot \frac{n}{(m - r)^2 + n^2} .$$

This result follows immediately from Theorem 1 and Lemma 3(d).

4. If $H(re^{i\theta})$ is positive and harmonic in the half-plane $0 < \theta < \pi$, then it may be written as [2]

$$H(re^{i\theta}) = dr \sin \theta + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{r \sin \theta}{r^2 - 2rt \cos \theta + t^2} \cdot dg(t) ,$$

where d is a non-negative number and $g(t)$ is a nondecreasing function such that

$$\int_{-\infty}^{\infty} \frac{dg(t)}{1 + t^2} < \infty .$$

Lemma 4. If $H(re^{i\theta})$ is defined by (12), $-1 < \rho < 1$, $0 < \phi < \pi$, n is an integer and α, δ are any positive numbers such that
\[H(n\delta e^{i\theta}) \sim a(n\delta) \delta \]

as \(n \to \infty \), then

\[H(re^{i\theta}) \sim ar^\theta \]

as \(r \to \infty \).

There is no loss in generality in assuming \(d = 0 \), and so as \(n \to \infty \)

\[
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dg(t)}{(\delta^2 + 2\delta t \cos \phi + t^2)} \sim \alpha \csc \phi \cdot (n\delta)^{-1}.
\]

This is easily shown to imply that for \(x > 1 \)

\[
\frac{g(x) - g(-x)}{x^2} + \int_x^\infty \frac{d\{g(t) - g(-t)\}}{t^2} < A x^{p-1}.
\]

Further, it will be sufficient to prove that for \(|r - \sigma| \leq 1 \) and \(r \to \infty \)

\[I(re^{i\theta}) - H(\sigma e^{i\theta}) = o(r^\theta). \]

Now from (12), since \(d = 0 \),

\[
\left| H(re^{i\theta}) - H(\sigma e^{i\theta}) \right| = \left| \frac{(r - \sigma) \sin \phi}{\pi} \int_{-\infty}^{\infty} \frac{(t^2 - \sigma^2)dg(t)}{(t^2 - 2rt \cos \phi + t^2)(\sigma^2 - 2\sigma t \cos \phi + t^2)} \right|
\]

\[
\leq A \left[\frac{g(r) - g(-r)}{r^2} + \int_r^\infty \frac{d\{g(t) - g(-t)\}}{t^2} \right]
\]

\[
\leq Ar^{p-1} = o(r^\theta)
\]

as \(r \to \infty \).

The following two lemmas are contained in a paper by Allen and Kerr [4].

Lemma 5. If \(H(re^{i\theta}) \) is defined by (12), \(-1 < \rho < 1\), and

\[H(re^{i\theta/2}) \sim (1 + \rho)ar^\rho \sec \rho \phi/2 \]

as \(r \to \infty \), then

\[g(x) \sim g(-x) \sim 2\alpha x^{\rho}\]

as \(x \to \infty \).

Actually Allen and Kerr state their results for the case \(r \to 0^+ \), but the case \(r \to \infty \) is an elementary corollary.
Lemma 6. If $H(re^{i\theta})$ is defined by (12), $-1 < \rho < 1$, and

\begin{equation}
H(re^{i\theta}) \sim (1 + \rho) \csc \rho \pi \left[\alpha \sin \rho (\pi - \theta) + \beta \sin \rho \theta \right] r^\rho,
\end{equation}

as $r \to \infty$ for two distinct values of θ, then (13) remains true for all values of θ and as $x \to \infty$

\begin{equation}
g(x) - g(0) \sim \alpha x^{1+\rho}, \quad g(0) - g(-x) \sim \beta x^{1+\rho}.
\end{equation}

Theorem 2. If $f(m, n)$ is non-negative and preharmonic in the half-plane $n \geq 0$, $-1 < \rho < 1$, and

\begin{equation}
f(0, n) \sim (1 + \rho) \alpha \sec \rho \pi/2 \cdot n^\rho,
\end{equation}

as $n \to \infty$, then

\[
\sum_{m=-R}^{R} f(m, 0) \sim 2\alpha R^{1+\rho},
\]

as $R \to \infty$.

Theorem 3. If $f(m, n)$ is non-negative and preharmonic in the half-plane $n \geq 0$, $-1 < \rho < 1$, and

\begin{equation}
f(m, n) \sim (1 + \rho) \csc \rho \pi \left[\alpha \sin \rho \left(\pi - \arctan \frac{n}{m} \right) \\
+ \beta \sin \rho \left(\arctan \frac{n}{m} \right) \right] \left(n^2 + m^2 \right)^{\rho/2}
\end{equation}

as $n \to \infty$ for two distinct rational values of n/m, then (14) remains true for all rational values of n/m, and as $R \to \infty$ we have

\[
\sum_{m=0}^{R} f(m, 0) \sim \alpha R^{1+\rho}, \quad \sum_{m=-R}^{0} f(m, 0) \sim \beta R^{1+\rho}.
\]

In (12) we define $g(x)$ to be constant in the interval $n < x < n+1$, for all integers n and with saltus $f(n, 0)$ at $x = n$: then Theorems 2 and 3 follow directly from the corollary to Theorem 1 and Lemmas 4, 5, and 6.

Theorem 4. If $f(m, n)$ is non-negative and preharmonic in the half-plane $n \geq 0$, and for some finite $\bar{n} \geq 0$

\[
\lim_{m \to \infty} f(m, \bar{n}) = \alpha,
\]

then we have

\[
\lim_{m \to \infty} f(m, n) = \alpha_n
\]
for \(n \geq 0 \) where \(\alpha_n \) is a linear function of \(n \).

\(f(m, n) \) is non-negative and preharmonic in the half-plane \(n \geq \bar{n} \) and so by Theorem 1 has the representation

\[
f(m, n + \rho) = D\rho + \sum_{r=\infty}^{m} f(r, n)h(m - r, \rho)
\]

for \(\rho > 0 \), and some non-negative \(D \). From the definition of \(h(m, n) \) it is easily verified that

\[
\sum_{m=\infty}^{\infty} h(m, \rho) = 1.
\]

Also, from Lemma 3(d), for \(\rho > 0 \)

\[
h(m, \rho) < A\rho/(m^2 + \rho^2).
\]

From the hypothesis and Theorem 1, given \(\epsilon > 0 \) there exists an integer \(N > 0 \) for which

\[
| f(m, n) - \alpha | \leq \epsilon
\]

for \(m > N \) and for which

\[
\sum_{r=\infty}^{m-N} \frac{f(r, n)}{1 + r^2} \leq \epsilon.
\]

We may now apply (15)–(18) as follows:

\[
| f(m, n + \rho) - D\rho - \alpha |
\]

\[
\leq \sum_{r=\infty}^{m-N} | f(r, n) - \alpha | h(m - r, \rho)
\]

\[
\leq \sum_{r=\infty}^{m-N} f(r, n)h(m - r, \rho) + \alpha \sum_{r=\infty}^{m-N} h(m - r, \rho)
\]

\[
+ \sum_{r=N+1}^{\infty} | f(r, n) - \alpha | h(m - r, \rho)
\]

\[
\leq A\rho \sum_{r=\infty}^{m-N} \frac{f(r, n)}{1 + r^2} + \frac{A\rho}{(m - N)^2} \sum_{r=m-N}^{N} f(r, n)
\]

\[
+ A\rho \alpha \sum_{r=m-N}^{\infty} \frac{1}{r^2 + \rho^2} + \epsilon \sum_{r=N+1}^{\infty} h(m - r, \rho)
\]

\[
\leq A\rho \epsilon + \frac{A\rho}{(m - N)^2} \sum_{r=m-N}^{N} f(r, n) + \frac{A\rho \alpha}{m - N} + \epsilon.
\]
It is apparent that by a suitable choice of \(\varepsilon \) and correspondingly large \(m \), the right-hand side is arbitrarily small. This proves the theorem for \(n > \bar{n} \) and the complete result follows from the difference equation for preharmonic functions.

We are grateful to a referee for helpful criticism of the presentation of this paper. One of us (A.C.A) is indebted to the Commonwealth Fund of New York for a Commonwealth Fellowship.

References

Princeton University

A THEOREM OF PHRAGMÉN-LINDELÖF TYPE

ALFRED HUBER

1. Introduction. In the present paper the Phragmén-Lindelöf theorem for harmonic functions in the formulation of M. Heins [4] shall be extended to the solutions of the elliptic partial differential equation

\[
L_k[u] = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} + \frac{k}{x_n} \frac{\partial u}{\partial x_n} = 0 \quad (k < 1)
\]

(\(k \) denoting a real constant). Equation (1.1) appears in several problems. For an exposition of previous results in the theory of the solutions of (1.1) we refer to a recent paper of A. Weinstein [9].

A theorem of Phragmén-Lindelöf type for the solutions of a rather general class of elliptic partial differential equations has been proved by D. Gilbarg [3] and E. Hopf [5]. Because of the singular coefficient, (1.1) is not contained in this class.

We introduce the following notations, \(P(x_1, x_2, \ldots, x_n) \) denoting a point in the \(n \)-dimensional space:

Presented to the Society, February 28, 1953; received by the editors March 30, 1953.

1 Sponsored by the Office of Naval Research under contract Nr. N7 ONR-39705.