CONCERNING CERTAIN TYPES OF WEBS
MARY-ELIZABETH HAMSTROM

In my dissertation\(^1\) I defined a \(W_n\) set as follows: If \(n > 1\), a \(W_n\) set is a compact continuum \(M\) for which there exists a family \(F\) of \(n\) elements such that (1) each element of \(F\) is an upper semicontinuous collection of mutually exclusive continua which fills up \(M\) and is an arc with respect to its elements, and (2) if \(G\) is a collection of continua each belonging to some, but no two to the same, collection of the family \(F\), then the continua of the collection \(G\) have a point in common and their common part is totally disconnected. In that paper it was stated\(^2\) without proof that in the plane there exists a \(W_2\) set \(M\) whose boundary is the point set \(B(M)\) and which has a complementary domain whose boundary, \(J\), contains six limit points of \(B(M) - J\) but that no \(W_3\) set has a complementary domain whose boundary contains seven such points. It is the purpose of this paper to prove this statement.

In what follows the space considered will be the plane and if \(M\) is a point set the notation \(B(M)\) will be used to denote its boundary.

THEOREM 1. There exists a \(W_2\) set \(M\) whose outer boundary, \(J\), contains six limit points of \(B(M) - J\).

Proof. Let \(J\) denote a circle with interior \(E\). Let \(Q_1, Q_2, \ldots, Q_6\) be six points of \(J\) in that order. Let \(\gamma_1, \gamma_2, \ldots, \gamma_6\) be six sequences of circles such that (1) for each \(i\) the sequence \(\gamma_i\) has a sequential limiting set which contains only the point \(Q_i\), and (2) if \(x\) and \(y\) are two circles each belonging to one of the \(\gamma_i's\) then \(x\) is exterior to \(y\) and \(x+y\) is a subset of \(E\). Let \(D\) denote a point set such that \(P\) is a point of it if and only if there is a circle of one of the \(\gamma_i's\) whose interior contains \(P\). Let \(M\) denote the point set \(J+E-D\). We shall prove that \(M\) is a \(W_2\) set.

Let \(C\) denote a circle which lies, together with its interior, \(I\), in \(M-B(M)\). There exist\(^3\) three collections of arcs, \(H_1, H_2,\) and \(H_3\), satisfying with respect to \(C+I\) all the requirements of the definition of a \(W_2\) set and such that (1) if \(h_i\) is an endelement of \(H_1, h_i, C\) is an

Presented to the Society, November 29, 1952; received by the editors April 2, 1953.

\(^2\) Theorems 13 and 14.
\(^3\) This follows from the argument used in the proof of Theorem 2 of my dissertation.

974
endpoint of h_i and (2) if h_i is a non-endelement of H_i, $h_i \cdot C$ consists of the endpoints of h_i. There is a reversible transformation of the number interval $[0, 1]$ into the collection H_1 such that if for each number x in this interval h_x denotes its image under this transformation and the number sequence x_1, x_2, \cdots converges to the number a, then the limiting set of the sequence h_x, h_{x_2}, \cdots is a subset of h_a. Let P_0 and P_1 denote $C \cdot h_0$ and $C \cdot h_1$ respectively. The circle C is the sum of two arcs, P_0XP_1 and $P_0X'P_1$. If $0 < x < 1$, h_x contains a point P_x on P_0XP_1 and a point P_x' on $P_0X'P_1$.

Let α_1 denote a positive number and let a and b be two numbers between 0 and 1 such that a is less than b. Let Q_1Q_2, Q_2Q_3, Q_3Q_4, Q_4Q_5, Q_5Q_6, and Q_6Q_7 be six nonoverlapping arcs whose sum is J. Let u_a be an arc lying except for its endpoints in $M - J$ such that $u_a \cdot J = Q_1 + Q_2$, $u_a \cdot (C + I) = h_a$, $u_a - h_a$ is the sum of a countable number of straight line intervals with slope α_1 or $-\alpha_1$ and the simple closed curve $u_a + Q_1Q_2$ encloses h_0 and every circle of γ_1 and γ_2 and neither encloses nor intersects any circle of the remaining γ_i's. Let u_b be an arc lying except for its endpoints in $M - (u_a + J)$ such that $u_b \cdot J = Q_4 + Q_5$, $u_b \cdot (C + I) = h_b$, $u_b - h_b$ is the sum of a countable number of straight line intervals with slope α_1 or $-\alpha_1$, and $u_a + Q_1Q_2$ encloses h_1 and every circle of γ_4 and γ_5 and neither encloses nor intersects any element of γ_1 or γ_6.

Let M_1, M_2, and M_3 denote $u_a + Q_1Q_2$ plus its interior, $Q_2Q_3Q_4 + Q_4Q_5Q_6 + u_a + u_b$ plus its interior, and $u_a + Q_1Q_2$ plus its interior respectively. There is a continuous collection, U_1, of mutually exclusive arcs and simple closed curves filling up $M - M_1$ such that (1) U_1 is an arc with respect to its elements, (2) h_0 and $u_a + Q_1Q_2$ are the endelements of U_1, (3) if x is an element of γ_1 or γ_2 and u is an element of U_1 intersecting x then $u \cdot x$ is totally disconnected and (4) if u is a non-endelement of U_1, $u \cdot (C + I)$ is an element of H_1 and $u - u \cdot (C + I)$ is the sum of a countable number of straight line intervals with slope α_1 or $-\alpha_1$.

There is a continuous collection, U_2, of mutually exclusive arcs and simple closed curves filling up $M_2 \cdot M$ such that (1) U_2 is an arc with respect to its elements, (2) h_1 and $u_b + Q_4Q_5$ are the endelements of U_3, (3) if x is an element of γ_4 or γ_5 and u is an element of U_3 intersecting x then $u \cdot x$ is totally disconnected, and (4) if u is a non-endelement of U_3, $u \cdot (C + I)$ is an element of H_1 and $u - u \cdot (C + I)$ is the sum of a

\footnote{It follows from Theorem 8 of my dissertation that if U is the collection of all elements of U_1 intersecting x, then the endelements of U are simple closed curves, the non-endelements of U are arcs, and no non-endelement intersects any element of γ_1 or γ_2 other than x.}
countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\).

There is an upper semicontinuous collection, \(U_2 \), of mutually exclusive continuous curves filling up \(M \) such that (1) \(U_2 \) is an arc with respect to its elements, (2) \(u_b \) and \(u_a \) are the endelements of \(U_2 \), (3) if \(u \) is an element of \(U_2 \) it contains only one point of the arc \(Q_2Q_3Q_4 \) and only one point of the arc \(Q_5Q_6Q_7 \), the point set \(u \cdot (C+I) \) is an element of \(H_1 \) and \(u-u \cdot (C+I) \) is either the sum of a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\) or the sum of some elements of \(\gamma_3 \) or \(\gamma_6 \) and a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), and (4) if \(u \) is an element of \(U_2 \) and it intersects an element of \(\gamma_3 \) or \(\gamma_6 \) it contains that element.

Let \(G_x \) denote the sum of the collections \(U_1, U_2, \) and \(U_3 \). The collection \(G_1 \) is an upper semicontinuous collection of mutually exclusive continuous curves filling up \(M \) such that \(G_1 \) is an arc with respect to its elements and each element of \(G_1 \) is either (1) an element of \(H_1 \), (2) the sum of an element of \(H_1 \) and a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), or (3) the sum of an element of \(H_1 \), a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), and either \(Q_1Q_2, Q_3Q_4, \) or some elements of \(\gamma_3 \) or \(\gamma_6 \).

If, in the above, we replace \(\alpha \) by a positive number \(\alpha_2 \) different from \(\alpha \) and if we replace \(\gamma_3 \) by \(\gamma_2 \), we can obtain an upper semicontinuous collection, \(G_2 \), of mutually exclusive continuous curves filling up \(M \) such that \(G_2 \) is an arc with respect to its elements and each element of \(G_2 \) is either (1) an element of \(H_2 \), (2) the sum of an element of \(H_2 \) and a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), or (3) the sum of an element of \(H_2 \), a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), and either \(Q_3Q_4, Q_5Q_6, \) or some elements of \(\gamma_2 \) or \(\gamma_1 \).

Replacing \(\alpha \) by a positive number \(\alpha_3 \) different from \(\alpha \) and \(\alpha_2 \) and replacing \(\gamma_3 \) by \(\gamma_2 \) we can obtain an upper semicontinuous collection, \(G_3 \), of mutually exclusive continuous curves filling up \(M \) such that \(G_3 \) is an arc with respect to its elements and each element of \(G_3 \) is either (1) an element of \(H_3 \), (2) the sum of an element of \(H_3 \) and a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), or (3) the sum of an element of \(H_3 \), a countable number of straight line intervals with slope \(\alpha \) or \(-\alpha\), and either \(Q_3Q_4, Q_5Q_6, \) or some elements of \(\gamma_2 \) or \(\gamma_1 \).

The collections \(G_1, G_2, \) and \(G_3 \) satisfy with respect to \(M \) all the requirements of the definition of a \(W_3 \) set.

Theorem 2. If \(M \) is a \(W_3 \) set and \(J \) is the boundary of a complementary domain of \(M \), then \(J \) does not contain seven limit points of \(B(M) - J \).
Proof. The continuum J is a simple closed curve. Suppose J does contain seven limit points of $B(M) - J$. Let α denote a collection of seven such points of J. The simple closed curve J is the sum of seven nonoverlapping arcs the sum of whose endpoints is the sum of the elements of α. Let β denote the collection of these arcs.

Let $G_1, G_2,$ and G_3 be collections satisfying with respect to M all the requirements of the definition of W_3 set. For each i less than 4 let H_i denote the collection of all elements of G_i which intersect J. We shall prove first that each of these collections consists of more than one element.

Suppose H_3 consists of only one element, h. Since J is a subset of h and M is a W_3 set with respect to $G_1, G_2,$ and G_3, each of the collections H_1 and H_2 contains more than one element. Consequently, for each i less than 3, H_i contains two elements, h_i and h_i', neither of which separates H_i^*.\(^6\) Let U_i denote $H_i^* - (h_i + h_i')$. Since $h_i \cdot J$ and $h_i' \cdot J$ are connected and $h_i \cdot h$ and $h_i' \cdot h$ are totally disconnected, $h_i \cdot J$ and $h_i' \cdot J$ are degenerate. Consequently U_1 and U_2 each contains five points of α and one of these points is in $U_1 \cdot U_2$. Let P denote one such point.

Since U_1 and U_2 are open subsets of M and P is a limit point of $B(M) - J$, there is a complementary domain of M whose boundary, J', intersects $U_1 \cdot U_2$. The continuum J' is therefore a subset of an element of H_1 and an element of H_2, which is contrary to the assumption that M is a W_3 set with respect to $G_1, G_2,$ and G_3. Hence H_3 contains more than one element. Let h_3 and h_3' be the elements of H_3 which do not separate H_3^* and let U_3 denote $H_3^* - (h_3 + h_3')$.

For each i less than 4 let k_i denote the number of points of α lying in U_i. There are $7-k_i$ points of α in $h_i + h_i'$ and if k_i is not greater than 4 then each of at least $7-k_i-2$ arcs of β is a subset of h_i or h_i'. Let l_i denote $5-k_i$. If k_i exceeds 4 let l_i be 0. In any case, $5-k_i \leq l_i$. Since no point of α is common to two of the point sets $U_1, U_2,$ and U_3, $k_1 + k_2 + k_3 \leq 7$. Since no arc of β is a subset of two elements of the sum of the collections $H_1, H_2,$ and H_3, $l_1 + l_2 + l_3 \leq 7$. However, $l_1 + l_2 + l_3 + (5-k_1) + (5-k_2) + (5-k_3) \geq 8$. Thus the assumption that J contains seven limit points of $B(M) - J$ leads to a contradiction.

\(^7\) See Theorem 8 of my dissertation.

\(^8\) See the corollary to Theorem 8 of my dissertation.

\(^9\) This follows from an argument similar to that used to prove that H_3 does not contain only one element.
In a great many cases the methods used in the proofs of the above theorems can be used to determine whether a given continuum is a W_n set. In particular, they can be used to prove that no W_1 set, M, has a complementary domain whose boundary, J, contains three limit points of $B(M) - J$, no W_4 set has a complementary domain whose boundary contains five such points, and that there exists a W_6 set whose outer boundary contains three such points.

The University of Texas and
Goucher College

ANOTHER REMARK ON "SOME PROBLEMS IN
CONFORMAL MAPPING"

JAMES A. JENKINS

It was remarked in [2] and proved in [3] that for every triply-connected domain D there are certain triply-connected subdomains D' having the same topological situation and admitting no conformal mapping into D preserving this topological situation other than the identity. This result implies at once several others. Indeed let D have contours K_1, K_2, K_3 and let the corresponding contours of D' be K'_1, K'_2, K'_3. It is assumed no contour of D reduces to a point. If D' is obtained from D by producing slits from K_2, K_3 out onto the same connected piece of the line of symmetry of D, it is clear that there is no conformal mapping of D' into D which can make K'_1 go into K_2 or K'_1 go into K_3 (in the natural sense of boundary correspondence). Thus for a domain D and subdomain D' there may exist no conformal mapping of the above type which carries either (a) a given boundary contour of D' into the corresponding boundary contour of D or (b) some two boundary contours of D' into the corresponding two boundary contours of D.

The question naturally arises whether given a triply-connected domain D and a triply-connected subdomain D' having the same topological situation there exists a conformal mapping of D' into D preserving the topological situation and carrying some one contour of D' into the corresponding contour of D. This question was raised to me by Professor A. Beurling some four or five years ago. The simple example above is not sufficient to provide an answer since in it

Received by the editors February 11, 1953.