THE ALGEBRA OF BOUNDED FUNCTIONS
KENNETH G. WOLFSON

1. Introduction. The Banach algebra $B(X)$ of all bounded complex-valued functions on a set X has been considered by several writers (cf., e.g. [10]). It is our purpose to give an ideal-theoretic characterization of this algebra. The main result (Theorem 3) states necessary and sufficient conditions that a B^*-algebra be equivalent to a $B(X)$ on an essentially unique set X.

Our method consists in establishing a lattice anti-isomorphism between the lattice of subsets of X and the lattice of all those ideals of $B(X)$ which are defined by annihilation.

These results are also applied to the study of certain p-rings.

2. By a B^*-algebra is meant a Banach algebra over the complex numbers such that, to each element x, there corresponds a unique element x^* (the adjoint of x), with the following properties: (i) $(x^*)^* = x$, (ii) $(xy)^* = y^*x^*$, (iii) if α, β are complex numbers, and $\bar{\alpha}, \bar{\beta}$ are their complex conjugates, then $(\alpha x + \beta y)^* = \bar{\alpha}x^* + \bar{\beta}y^*$, (iv) $\|x^*x\| = \|x\|^2$.

Let X be any set and denote by $B(X)$ the set of all bounded complex-valued functions defined on X. For $f(x) \in B(X)$ define $\|f(x)\| = \sup_{x \in X} |f(x)|$. Under the usual definitions of addition and multiplication and with the norm defined above, and $[f(x)]^* = \overline{f(x)}$, $B(X)$ is a commutative B^*-algebra with identity.

If G is any subset of an arbitrary commutative ring K, denote by $R(G)$ the set of elements k in K which satisfy $Gk = 0$. $R(G)$ is an ideal of K which we call an annulet. It is closed if K is a topological ring.

$E(X)$ will denote an arbitrary algebra of bounded functions on the set X, while the algebra of all functions which are zero at all but a finite set of points of X is denoted by $B_0(X)$.

If S is any subset of X, and G a subset of $E(X)$, let $A(S)$ be the set of all $f \in E(X)$ which satisfy $f(S) = 0$, and $N(G)$ the set of all $x \in X$ for which $G(x) = 0$. It is clear that $A(S)$ is a closed ideal of $E(X)$.

If S, T are any subsets of X, the logical sum and product are denoted by $S + T$ and $S \cap T$ respectively, while $X - S$ denotes the set of those elements in X which are not in S.

Lemma 1. If $E(X)$ is an algebra of bounded functions containing the
algebra \(B_0(X) \), then

1. \(R[A(S)] = A(X - S) \) for all \(S \leq X \),
2. \(N[A(S)] = S \) for all \(S \leq X \),
3. \(R(G) = A[X - N(G)] \) for every subset \(G \) of \(E \).

Proof. (1) \(A(S)A(X - S) = 0 \) implies that \(A(X - S) \leq R[A(S)] \). If \(S = X \), then \(A(S) = 0 \) so that \(R[A(S)] = E \). If we accept the convention that all functions vanish on the empty set, we see that (1) holds for \(S = X \). Assume \(S < X \) and let \(f \in R[A(S)] \) so that \(A(S)f = 0 \). Let \(x \in X - S \). Then there exists \(g \in E \) satisfying \(g(S) = 0 \) and \(g(*) = 1 \). Thus \(g \in A(S) \) but since \(gf = 0 \) we must have \(f(x) = 0 \). That is, \(f(X - S) = 0 \) or \(f \in A(X - S) \) proving (1).

(2) Since \(A(S)[S] = 0 \) we have \(S \leq N[A(S)] \). To complete the proof we must show \(N[A(S)] \leq S \). We shall assume \(x \in S \) and show \(x \in N[A(S)] \). Write \(X = x + S + U \) and define \(f \) by

\[
 f(S + U) = 0 \quad \text{and} \quad f(x) = 1.
\]

Such an \(f \in E(X) \) by assumption. Then \(f \in A(S) \). But \(f(x) = 1 \) implies \(A(S)(x) \neq 0 \) so that \(x \in N[A(S)] \) which shows (2).

(3) Let \(f \in R(G) \) so that \(Gf = 0 \). Let \(x \in [X - N(G)] \) so that \(x \in N(G) \). This means there exists a function \(g \in G \) such that \(g(x) \neq 0 \). But since \(g(x)f(x) = 0 \) this implies \(f(x) = 0 \). Hence \(f[X - N(G)] = 0 \) and \(f \in A[X - N(G)] \). The reverse implication follows by reversing the steps.

Theorem 1. Let \(E(X) \) be an algebra of bounded functions which contains \(B_0(X) \). Then the mapping \(S \to A(S) \) is a duality (lattice anti-isomorphism) between the lattice of all subsets \(S \) of \(X \) and the lattice of all annulets of \(E(X) \).

Proof. The mapping \(S \to A(S) \) is one-one by (2) of Lemma 1. Clearly \(S_1 \leq S_2 \) implies \(A(S_1) \leq A(S_2) \) and the mapping is a duality. Every annulet has the form \(A(S) \) by (3) of Lemma 1, and every \(A(S) \) is an annulet by (1) of Lemma 1.

Theorem 2. In \(B(X) \) the sum of two annulets is an annulet.

Proof. Denote by \((a) \) the ideal generated by the element \(a \). An ideal of \(B(X) \) is an annulet if and only if it is a principal ideal generated by an idempotent. For, if \(e \) is idempotent \((e) = R(1 - e) \), and if \(G \) is an annulet, \(G = (e) \) for idempotent \(e \) by Theorem 2.3 of [3]. It is clear that if \(G = A(S) \), the idempotent \(e \) is just the characteristic function of \(X - S \). Now, let the given annulets be \(A(S), A(T) \) where \(A(S) = (e), A(T) = f \) for idempotents \(e \) and \(f \) which satisfy
\[e(S) = 0, \quad f(T) = 0, \]
\[e(X - S) = 1, \quad f(X - T) = 1. \]

Since \(A(S) \) and \(A(T) \) are contained in \(A(S \cap T) \) it follows that \(A(S) + A(T) \subseteq A(S \cap T) \). It remains to show that \(A(S \cap T) \subseteq A(S) + A(T) \). Let \(A(S \cap T) = (g) \) where \(g(S \cap T) = 0, \ g\{(X - [S \cap T]\} = 1 \). Write \(X = [S \cap T] + [S - (S \cap T)] + [T - (S \cap T)] + [X - (S + T)] \), a decomposition of \(X \) into four mutually disjoint sets. Then \(g = e + f - ef \) on these four parts separately and hence \(g = e + f - ef \). Hence \(g \subseteq A(S) + A(T) \) and \((g) \subseteq A(S) + A(T) \), which completes the proof.

Theorem 3. A commutative \(B^* \)-algebra \(K \) containing an identity is isomorphic (in a norm and \(* \) preserving manner) to an algebra \(B(X) \) of all bounded complex-valued functions on an essentially unique set \(X \) if and only if:

1. Every nonzero closed ideal of \(K \) contains a minimal ideal.
2. The sum of two annulets is an annulet.

Proof. The minimal ideals of \(K \) are of the form \(e_i K \) for \(e_i \) a projection (self-adjoint idempotent) [2, Lemma 4.2]. Each \(e_i K \) is a field and by the Gelfand-Mazur theorem is isomorphic and isometric to the complex field. Consider the mapping \(x \mapsto \{e_i x\} \) for \(x \in K \). Since each \(e_i \) is of norm 1, if we define \(* \) and norm in the obvious way we have a \(* \) homomorphism of \(K \) into the algebra of all bounded sequences. Since \(\prod_i R(e_i K) \) is an intersection of maximal and hence [1, p. 8] closed ideals, it follows from (1) and a theorem of McCoy [5, p. 873], that \(K \) is isomorphic to a special subdirect sum of the \(e_i K \). That is, \(K \) is isomorphic to an algebra \(E(X) \) of bounded functions defined on the set \(X \) of minimal ideals \(e_i K \), where if \(k \in K \), by \(k(e_i K) \) is meant the complex number \(\lambda \) defined by \(e_i k = \lambda e_i \). Moreover, to each \(x \in X \) and complex number \(\lambda \), there exists \(f \in E(X) \) such that \(f(x) = \lambda \), and \(f(X - x) = 0 \). Since \(E(X) \) is a ring we have \(E(X) \supseteq B_0(X) \).

We wish to show that \(E(X) \) contains all characteristic functions of subsets of \(X \). For any subset \(S \subseteq X \), consider the annulets \(A(S), A(X - S) \). By Theorem 1,

\[A(S) \cup A(X - S) = A(0) = E(X), \]
\[A(S) \cap A(X - S) = A(X) = 0, \]

where \(\cup \) indicates the lattice join of annulets. But, by (2),

\[A(S) \cup A(X - S) = A(S) + A(X - S). \]
Hence $E(X) = A(S) \oplus A(X - S)$ in the sense of direct sum of ideals. By a theorem of von Neumann [7, p. 7] it follows, since $E(X)$ contains an identity, that there exists an idempotent $e \leq E(X)$ such that

$$A(S) = (1 - e)E, \quad A(X - S) = eE.$$

Since $e \leq A(X - S)$ this implies $e(X - S) = 0$. \(1 - e \in A(S)\) implies \((1 - e)(S) = 0\) or $e(S) = 1$. Hence $E(X)$ contains all characteristic functions and is therefore clearly dense in $B(X)$. Applying Theorem 6.4 of [2] the proof of sufficiency is complete.

By Theorem 1, if K were isomorphic to $B(X_1)$ and $B(X_2)$ there would exist a lattice isomorphism of the lattice of all subsets of X_1 upon the lattice of all subsets of X_2. In this sense the set X is unique.

The algebra $B(X)$ is certainly a B^*-algebra with identity, and satisfies (2) by Theorem 2. Every nonzero ideal of $B(X)$ (not only the closed ones) contains a minimal ideal, as in Theorem 16 of [5] mentioned previously. This completes the proof.

Remark. The set X may also be considered to be the set of all maximal annulets of $B(X)$ (those maximal ideals which are annihilators of minimal ideals). Since $B(X)$ may be represented as the algebra $C(M)$ of all continuous functions on the compact space M of its maximal ideals, it is seen that M is the Stone-Čech compactification [9, p. 463] of the discrete space X of maximal annulets. An alternative proof of Theorem 3 could start with the representation $C(M)$.

3. The preceding results with slight modification apply to rings of functions from a discrete set X to a finite field.

In [6] it was shown that a ring of prime characteristic p, all of whose elements x satisfy $x^p = x$ (called a p-ring), is isomorphic to a subdirect sum of fields $GF(p)$. The ring $P(X)$ of all functions from a set X to $GF(p)$ (the complete direct sum of the fields) is generated by its idempotents, since an arbitrary function in $P(X)$ assumes only a finite number of distinct values and each is an integral multiple of the identity of the field $GF(p)$. Hence we have:

A p-ring K containing an identity element is isomorphic to a $P(X)$ if and only if:

1. Every annulet of K contains a minimal ideal.
2. The sum of two annulets is an annulet.

Specializing this to Boolean rings ($p = 2$) we get:

A Boolean ring K containing an identity is isomorphic to the ring of all subsets of a set S if and only if it satisfies conditions (1) and (2) above.
This result is similar to one obtained by Stone [8, p. 98, Theorem 62].

The complete direct sum of the fields $GF(p^n)$ is generated by its idempotents when considered as an algebra over $GF(p^n)$ (although not as a ring). Hence we have:

Let K be an algebra (containing an identity element) over the Galois field $GF(p^n)$, all of whose elements satisfy the equation $x^{p^n} = x$. Then K is isomorphic to the algebra $W(X)$ of all functions from a set X to the field $GF(p^n)$ if and only if K satisfies the conditions (1) and (2) (cf. [4, p. 379, Theorem 3]).

References

Rutgers University