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A Hausdorff space X is said to be paracompact [2] provided that

if W is a collection of open sets covering X, there exists a collection

W of open sets covering X such that (1) each element of W is a sub-

set of an element of W and (2) each point of X belongs to an open

set which intersects only a finite number of elements of W; X is said

to be countably paracompact [3] provided that if W is a countable

collection of open sets covering X, there exists a collection W satis-

fying the above conditions. It is known that not every normal

Hausdorff space is paracompact [2], but the question whether every

such space is countably paracompact is as yet unsolved (cf. [3]).

Since every linearly ordered space1 is a normal Hausdorff space (cf.

[l, p. 39]) but not necessarily paracompact [2], it seems natural to

inquire whether every linearly ordered space must be countably

paracompact. The purpose of the present note is to show that this

is the case.

Definitions. 1. A collection G of subsets of a space X is said to be

locally finite provided every point of X belongs to an open set X which

intersects at most a finite number of the elements of G. 2. If G and

H are collections of sets, then H is said to be a refinement of G pro-

vided each element of H is a subset of some element of G. 3. A collec-

tion G of sets is said to be coherent provided G is not the sum of two

collections Gi and G2 such that no element of Gi intersects an element

of G2. 4. If p belongs to some element of the collection G of sets, then

the star of p with respect to G is the sum of the elements of G which

contain p.

Suppose X is a linearly ordered space and W is a countable col-

lection of open sets covering X. For each point p of X, let Mp denote

the set of all points x of X such that there is a finite, coherent collec-

tion Hx of open intervals of X such that Hx is a refinement of W and

covers the set whose elements are p and x. For each point p of X, let

Kp denote the collection of all open intervals k of X such that k is a

subset of Mp and of some element of W. It is easily seen that for each

p in X, Mv is both open and closed and if q(E.Mp, then Mq = Mp.
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1 By a linearly ordered space is mean a simply ordered set with its intrinsic topology;

i.e., the topology in which "neighborhood of x" means "open interval containing x."
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Hence if for each point p of A, there is a locally finite collection Gp

of open sets which is a refinement of Kp and covers Mp, then there is

a locally finite collection G of open sets which is a refinement of W

and covers A. The existence of such a collection Gp for each p in A is

a consequence of the following two theorems.

Theorem 1. If pCX and R= {xC-Mp\pgx}, then either (1) R is

covered by a finite subcollection of Kp or (2) there is a sequence {xn}

of points of R such that, for each w, xn<xn+i and if x£R, then, for some

Proof. Let Go denote the star of p with respect to Kp. If there is a

point of R which is preceded2 by every point of Go, then there is a

point ai of R which is preceded by every point of G0 and which be-

longs to an element of Kp which intersects Go- Let Gi denote the star

of <ii with respect to Kp. If there is a point of R which is preceded by

every point of Gi, then there is a point a2 of R which is preceded by

every point of Gi and which belongs to an element of Kp which inter-

sects Gi. It follows by induction that there exist (possibly finite) se-

quences Go, Gi, G2, • ■ ■ and <3o, ai, a2, ■ ■ ■ (ao = p) such that no point

of R is preceded by every point of ^G,- and for each w, (1) an is a

point of R, (2) G„ is the star of a„ with respect to Kp, and (3) an+i is

preceded by every point of G„ and belongs to an element of Kp which

intersects G„. Let a denote the sequence Go, Gi, G2, • • • .

Suppose k is an element of Kp which intersects R- X^«. Let j

denote the smallest integer w such that k intersects G„. Suppose Gy

is the last term of a. Then Gy contains {xCMp\ajf$x}. If j = 0, then,

since k intersects R, k either contains ao or is a subset of A; in either

case k is a subset of Go. Suppose k^O. If k contains a point x such that

a,gx, then k is a subset of Gy. If each point of k precedes Oy, then,

since there is an element of Kp which contains a, and intersects Gy_i

and k does not intersect Gy_i, k is a subset of Gy. Suppose Gy is not the

last term of a. Then if k is not a subset of Gy+Gy+i, it contains a

point which is preceded by every point of Gy+i and hence, since k

intersects Gj, k contains ay+i. But this implies that k is a subset of

Gj+i. Thus every element of Kp which intersects R- X)G< is a subset

of Eg.-.
If a is infinite, for each w, let xn = an; it is easily seen that {x„}

satisfies condition (2) of the conclusion of this theorem. Suppose a is

finite. Let Gy be the last term of a and let 7)= {x£Afj,|ay<x}.

Since D is an open subset of Mp, if D is a subset of any element of

W, condition (1) is satisfied. Suppose D is not a subset of any element

* If x<y, then * is said to precede y.
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of W. Let Wi, w2, w3, • ■ ■ denote the elements of W which contain a,.

For each n, let T„ denote the sum of all elements of Kp which contain

a, and lie in w„. For each n, there is a point of Mp which is preceded

by every point of Tn (otherwise D would be a subset of wn) and hence

there exists a sequence {xn} of points of R such that Xi is preceded by

every point of 7\ and for each n, xn+i is preceded by each of the points

Xi, x2, • • • , xn and by every point of Tn. Suppose x is a point of R.

If x belongs to Gj, it belongs to an element k of Kp which contains a,.

Since kE.Kp, for some n, k is a subset of wn and hence of Tn. Conse-

quently x<x„+i. If x does not belong to Gj, then x<a3- and hence

x<xi. Hence condition (2) is fulfilled.

Theorem 2. Under the hypothesis of Theorem 1, there is a locally

finite collection U of open sets which is a refinement of Kp and covers R.

Proof. If condition (1) of the conclusion of Theorem 1 is satisfied,

there is such a collection U. Suppose Condition (1) is not satisfied

and let {x„} be a sequence of points of R satisfying condition (2).

For each n, let Hn denote a finite, coherent collection of elements of

Kp which covers the set whose elements are p and xn+i. Let H{ =H

and for each n greater than 1, let Hi denote a finite collection of open

intervals such that (1) Hn' is a refinement of Hn which covers the

closed interval x„xn+i and (2) no element of Hn' intersects the closed

interval pxn-i- Let U= 22-ff,'. Then U is a locally finite collection of

open sets which is a refinement of Kp and covers R.

It can be shown by a similar argument that if L= {xGAfp| x^p],

then there is a locally finite collection V of open sets which is a

refinement of Kp and covers L. The collection £/+ V is a locally

finite collection of open sets which is a refinement of Kp and covers

Mp. It follows that X is countably paracompact.
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