CONCERNING INTEGRALS

PASQUALE PORCELLI

1. Introduction. R. E. Lane [2] has given the following definition of an integral on the interval \([a, b]\) of the function \(f\) with respect to the function \(g\). If \(D\) is an ordered subdivision \(\{x_i\}_{i=0}^{n+1}\) of the interval \([a, b]\), \(\sum_D(f, g)\) denotes the sum

\[
\sum_{i=1}^{n+1} \frac{1}{2} [f(x_i) + f(x_{i-1})] [g(x_i) - g(x_{i-1})].
\]

The statement that \(f\) is \(g\)-integrable on \([a, b]\) means that there exists a number \(J\) such that for each positive number \(\epsilon\) there is an ordered subdivision \(D\) of \([a, b]\), such that for every refinement \(D'\) of \(D\), \(|J - \sum_{D'}(f, g)| < \epsilon\). The number \(J\) is the integral on \([a, b]\) of \(f\) with respect to \(g\), and is denoted by \(\int_a^b f dg\). This integral generalizes the Stieltjes integral and has many of its properties, e.g., is an additive function of intervals and a bilinear function of \((f, g)\); if \(f\) is \(g\)-integrable on \([a, b]\), then \(g\) is \(f\)-integrable on \([a, b]\) and \(\int_a^b gdf = \int_a^b f dg\). If \(g \in BV[a, b]\) and \(f\) has only discontinuities of the first kind in \([a, b]\), then \(f\) is \(g\)-integrable on \([a, b]\) and, in particular, if \(g\) is a simple step-function, then

\[
\int_a^b f dg = \sum_{a < x \leq b} \frac{f(x) + f(x -)}{2} [g(x) - g(x -)] + \sum_{a \leq x < b} \frac{f(x +) + f(x)}{2} [g(x +) - g(x)].
\]

Suppose \(g\) is a nondecreasing function and \(\{f_n\}_{n=1}^\infty\) a uniformly bounded sequence of simple step-functions converging to a function \(f\) in \([a, b] - S\), where \(S\) is a subset of \([a, b]\) of “\(g\)-length 0.” It is to be expected that the methods of F. Riesz [3] can be applied to the sequence \(\{\int_a^b f_n dg\}_{n=1}^\infty\), and its limit used to define a Riesz type integral of \(f\) with respect to \(g\) on \([a, b]\).

In this paper we have reached the desired result, but by methods which are in some way even more elementary than those of Riesz.

Presented to the Society, September 5, 1953; received by the editors August 3, 1953 and, in revised form, October 14, 1953.

1 The statement that \(g\) is a simple step-function means that \(g\) is a function on the set of all numbers and if \([a, b]\) is an interval, then there exist a subdivision \(a = x_0 < x_1 < \ldots < x_n = b\) and a sequence \(\{k_p\}_{p=1}^\infty\) of numbers, such that \(g(x) = k_p\) if \(k_{p-1} < x < k_p\).
We depend upon approximation to the nondecreasing function g by step-functions, and essentially reduce the question of measure of S to that of the measure of a finite subset of S.

2. **Outer g-length of a number set.** Throughout this paper, g denotes a nondecreasing function on the set of all numbers.

If S is a number set, then the statement that $l_g S$ is the outer g-length of S means that $l_g S$ is the largest number k such that if G is a countable collection of segments covering S, then $k \leq \sum [g(q) - g(p)]$, the sum being taken over every segment (p, q) in G.

We state here, without proof, some elementary properties of outer g-length.

(i) The outer g-length of the interval $[a, b]$ is $g(b+) - g(a-)$.
(ii) The outer g-length of the segment (a, b) is $g(b- - g(a+)$.
(iii) If Q is an open and bounded number set and ϵ a positive number, then there exists a finite collection G of mutually exclusive intervals, such that if G^* is a subset of Q, then $l_g[a, b] = g(b) - g(a)$ for each interval $[a, b]$ in G, and $0 \leq l_g Q - l_g G^* < \epsilon$.

(iv) If S and T are bounded and mutually exclusive number sets and h is a nondecreasing simple step-function, then $l_h(S+T) = l_h S + l_h T$.

(v) If each of S and T is a bounded number set, then $l_g(S+T) \leq l_g S + l_g T$.

Theorem A. If S is a bounded number set, each of ϵ and δ a positive number and $l_g S \geq \delta$, then there exists a nondecreasing simple step-function h, such that, for, every number x, $|h(x) - g(x)| < \epsilon$ and $l_h S \geq \delta$.

Proof. Suppose $[a, b]$ is an interval containing S. There exists an ordered subdivision $\{x_i\}_{i=0}^{n+1}$ of $[a, b]$ such that if $x \in (x_{i-1}, x_i)$ then $|g(x) - g(x_{i-1})| < \epsilon/2$. Suppose $\{y_i\}_{i=1}^{n+1}$ is a sequence of numbers such that $y_i \in (x_{i-1}, x_i)$ and $y_i \in S$ if (x_{i-1}, x_i) contains a number belonging to S. There exists a number a' less than a, such that if $x \in (a', a)$ then $|g(x) - g(a-)| < \epsilon/2$ and a number b' greater than b, such that if $x \in (b, b')$ then $|g(x) - g(b+)| < \epsilon/2$.

There exist a simple step-function h_1 on the set of all numbers less than or equal to a', such that if $x \leq a'$ then $|h_1(x) - g(x)| < \epsilon/2$, $h_1(a') = g(a')$, and h_1 is nondecreasing, and a simple step-function h_2 on the set of all numbers greater than or equal to b', such that if $x \geq b'$ then $|h_2(x) - g(x)| < \epsilon/2$, $h_2(b') = g(b')$, and h_2 is nondecreasing (cf. [2]).

2 If G is a collection of sets, then G^* denotes the set that is the logical sum of the sets in G.
Concerning Integrals

1954

Concerning Integrals

h denotes the simple step-function defined as follows: if \(x \leq a' \), \(h(x) = h_1(x) \); if \(x \geq b' \), \(h(x) = h_2(x) \); if \(a' < x < a \), \(h(x) = g(a' +) \); if \(b < x < b' \), \(h(x) = g(b' -) \), \(h(x_i) = g(x_i) \) if \(i = 0, 1, \ldots, n + 1 \); if \(y_i \in S \) and \(x_{i-1} < x < x_i \), \(h(x) = g(y_i) \); and if \(y_i \in S, \ h(x) = g(x_{i-1}+) \) or \(h(x) = g(x_i-) \), according as \(x_{i-1} < x < y_i \) or \(y_i < x < x_i \), respectively.

h is a nondecreasing simple step-function, and if \(x \) is a number, then \(|h(x) - g(x)| < \epsilon \).

Suppose \(l_h S < \delta \).

If \(S \) is a subset of \(\{x_i\}_{i=0}^{n+1} \) then, inasmuch as \(g(x_i+) - g(x_i-) \leq h(x_i+) - h(x_i-) \), we see that \(l_o S \leq l_h S < \delta \), contrary to the hypothesis of the theorem. Therefore, there is a subset of \(S \) in one of the segments \((x_{i-1}, x_i) \). Suppose \(M \) denotes the collection of these segments containing subsets of \(S \), and \(S_1 \) is the common part of \(S \) and \(M^* \). If one of the numbers \(x_i \) belongs to \(S \), denote by \(S_2 \) the common part of \(S \) and \(\{x_i\}_{i=0}^{n+1} \) and suppose \(k = l_h S_2 \). If \(S = S_1 \) then \(k = 0 \).

Suppose \(\sum_{(p, q) \in M} [g(q) - g(p)] < l_o S - k \). Then there exists a positive number \(t \) such that \(\sum_{(p, q) \in M} [g(q) - g(p)] + k + t < l_o S \). If \(S = S_1 \), so that \(k = 0 \), this implies \(l_o S < l_o S \), an absurdity. If \(S \neq S_1 \), there is a finite collection \(H \) of segments covering \(S_2 \) such that \(\sum_{(p, q) \in H} [g(q) - g(p)] < k + t \), and therefore

\(l_o S \leq \sum_{(p, q) \in M + H} [g(q) - g(p)] < l_o S \),

an absurdity. Consequently, we see that

\[k + \sum_{(p, q) \in M} [g(q) - g(p)] \geq l_o S \geq \delta. \]

If \(S = S_1 \), this states that \(l_h S \geq \delta \).

If \(S \neq S_1 \), this states that \(l_h S_2 + l_h S_1 \geq \delta \) so that, by (iv), \(l_h S \geq \delta \).

Thus, the supposition \(l_h S < \delta \) is false, and Theorem A is established.

3. Sequences of simple step-functions. The following theorem is along the lines of a theorem of Egoroff [1].

Theorem B. If \(S \) is a proper subset of the interval \([a, b]\), \(l_o S = 0 \), \(\{h_n\}_{n=1}^{\infty} \) is a sequence of simple step-functions such that, for each number \(x \) in \([a, b] - S\), \(h_n(x) \to 0 \) as \(n \to \infty \), and each of \(\epsilon \) and \(\delta \) is a positive number, then there exists a subset \(T \) of \([a, b] - S\) and a positive integer \(N \) such that, for each \(x \) in \(T \) and each integer \(n \) greater than \(N \), \(|h_n(x)| < \epsilon \) and \(l_o T \geq l_o [a, b] - \delta \).

Proof. Suppose there exists a positive number \(\epsilon \) and a positive number \(\delta \), such that if \(N \) is a positive integer, \(T \) a subset of \([a, b] - S\) and, for each integer \(n \) greater than \(N \) and each \(x \) in \(T \), \(|h_n(x)| < \epsilon \), then \(l_o T < l_o [a, b] - \delta \).

If \(\epsilon \) is a positive integer, then there exists a number \(x \) in \([a, b] - S\)
such that for some integer m greater than n, $|h_m(x)| \geq \varepsilon$. Otherwise, the set $[a, b] - S$ is a set T for which the above supposition is violated. For each positive integer n, U_n denotes the set such that $x \in U_n$ only if $x \in [a, b] - S$ and $|h_m(x)| \geq \varepsilon$ for some integer m greater than n. We see that U_{n+1} is a subset of U_n. We shall prove that there exists a nonempty and closed number set C_n such that C_n is a subset of U_n and C_{n+1} is a subset of C_n. If $y \in C_n$ for $n = 1, 2, 3, \ldots$, then $y \in [a, b] - S$ and $h_n(y) \not\to 0$ as $n \to \infty$, contrary to the hypothesis of the theorem. This contradiction will show that our supposition is false and the theorem will then be established.

If $r_n = l \log U_n$, then $\{r_n\}_{n=1}^\infty$ is a nonincreasing sequence with a nonnegative limit r. If $r = 0$ and k is a positive integer such that $r_k < \delta$, the set $[a, b] - [S + U_k]$ is a set T for which our supposition is violated. Consequently, $r > 0$.

H denotes the set such that $x \in H$ only if x is a, b, or a number in $[a, b]$ where, for some positive integer n, h_n is not continuous. If H is finite, $K = H$; if H is infinite, K is a finite subset of H containing a and b, such that $\sum_{x \in H - K} [g(x+) - g(x-)] < r\theta$, where θ is a positive number less than $1/4$. If there is a number y such that $y \in K$ and $y \in U_n$ for $n = 1, 2, 3, \ldots$, we take $C_n = (y)$ for $n = 1, 2, 3, \ldots$.

Suppose there is a positive integer k such that K and U_k have no common part. If n is an integer greater than k, U_n is not a subset of H; U'_n denotes $U_n - H \cdot U_n$; Q_n denotes the set such that $x \in Q_n$ if and only if x is in the segment (a, b) and there is an integer m greater than n such that h_m is continuous at x and $|h_m(x)| \geq \varepsilon$. Q_n is open, $Q_{n+1} \subset Q_n$, and $U'_n = Q_n - (H+S) \cdot Q_n$; if $x \in K$ and $x \in S$, then $x \in Q_n$.

There exists a finite collection G_1 of mutually exclusive intervals such that if $[p, q] \in G_1$ then g is continuous at p and at q, $G_1^* \subset Q_{k+1}$, and $0 \leq l \log Q_{k+1} - l \log G_1^* < r\theta$, so that $l \log G_1^* > r - r\theta$. If i is a positive integer less than $k + 2$, C_i denotes the closed set G_i^*. If i is an integer greater than 1, then $l \log (Q_{k+1} \cdot G_1^*) \geq r - r\theta$.

For each integer i greater than 1, there exists a finite collection G_i of mutually exclusive intervals such that if $[p, q] \in G_i$, then g is continuous at p and at q, $G_i^* \subset Q_{k+1} \cdot G_i^* - 1$, $0 \leq l \log (Q_{k+1} \cdot G_i^*) - l \log G_i^* < r\theta$ and, for each integer j greater than i, $l \log (Q_{k+j} \cdot G_i^*) \geq r - r\theta - \cdots - r\theta^j$. For each positive integer i, C_{i+1}^* denotes the closed set G_i^*. Suppose Q is an open set covering $(H+S) \cdot Q_k$ such that $l \log Q < r\theta$. Since $l \log C_{i+1}^* > r(1 - 2\theta)/(1 - \theta) > r\theta$, then C_i' is not a subset of Q ($n = 1, 2, 3, \ldots$). If C_n is the closed set $C_n' - C_n' \cdot Q$, then $U_n \supset C_n \supset C_{n+1}$, and Theorem B is established.

4. g-summable functions. In this section we consider functions on an interval $[a, b]$ and suppose the nondecreasing function g is such
that $g(x) = g(a)$ for $x < a$ and $g(x) = g(b)$ for $x > b$.

Theorem C. If S is a proper subset of the interval $[a, b]$, $l_0S = 0$, \(\{f_n\}_{n=1}^\infty \) a sequence of simple step-functions, uniformly bounded on $[a, b]$, which converges to 0 on $[a, b] - S$, $f_n(x+) \to 0$ as $n \to \infty$ if $a < x < b$ and $g(x+) > g(x)$ and $f_n(x-) \to 0$ as $n \to \infty$ if $a < x \leq b$ and $g(x) > g(x-)$, then

$$\int_a^b f_n \, dg \to 0 \quad \text{as } n \to \infty.$$

Proof. Suppose M is a number such that if $x \in [a, b]$ and n is a positive integer, then $|f_n(x)| < M$. Suppose ϵ is a positive number and $\epsilon_1 = \epsilon / \{4 + 8[g(b) - g(a)]\}$ and $\delta_1 = \epsilon / 2M$.

There exists a subset T_1 of $[a, b] - S$ and a positive integer N_1 such that, if $n > N_1$ and $x \in T_1$, then $|f_n(x)| < \epsilon_1$ and $l_0 T_1 \geq l_0 [a, b] - (\delta_1 / 2)$. Suppose H is the set such that $x \in H$ if and only if $x \in [a, b]$ and g is not continuous at x or, for some positive integer n, f_n is not continuous at x. There exists a finite subset K of H such that

$$\sum_{x \in H - K} [g(x+) - g(x-)] < \delta_1 / 2.$$

If $T = T_1 - (H - K) \cdot T_1$, then $l_0 T + l_0 [a, b] - \delta_1$.

There exists a sequence $\{h_n\}_{n=0}^\infty$ of nondecreasing simple step-functions such that $h_n(a) = g(a)$, $h_n(b) = g(b)$, $l_0 T \geq l_0 [a, b] - \delta_1$ or $l_0 \{[a, b] - T\} \leq \delta_1$ and, for each number x in $[a, b]$, $|g(x) - h_n(x)| < 1/n$.

Now, if each of m and n is a positive integer (cf. (1.1))

$$\int_a^b f_m \, dh_n = \sum_{x \in T \cdot (a, b)} \frac{f_m(x) + f_m(x-)}{2} \left[h_n(x) - h_n(x-) \right]$$

$$+ \sum_{x \in T \cdot (a, b)} \frac{f_m(x+) + f_m(x)}{2} \left[h_n(x+) - h_n(x) \right] + \sum_3,$$

where $| \sum_3 | \leq M \delta_1 = \epsilon / 2$, \sum_3 being a sum of like terms taken for $x \in [a, b] - T$. If we consider separately those terms for which $x \in K \cdot T$ and for which $x \in T - K \cdot T$, we see that there exists a positive integer N such that if $m, n > N$, then $|\int_a^b f_m \, dh_n| < \epsilon$.

Now, $\int_a^b f_m \, dg = \int_a^b f_m \, dh_n + \int_a^b f_m \, (g - h_n)$ so that, if we use integration by parts, and $m, n > N$,

$$|\int_a^b f_m \, dg| \leq |\int_a^b f_m \, dh_n| + |\int_a^b (g - h_n) \, df_m| \leq \epsilon + \frac{1}{n} V_a f_m$$

or $\int_a^b f_m \, dg \to 0$ as $m \to \infty$.}

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
This completes the proof of Theorem C.

The statement that the function \(f \) is \(g \)-summable on \([a, b] \) means that there exists a sequence \(\{f_m\}_{m=1}^{\infty} \) of simple step-functions, uniformly bounded on \([a, b] \), such that \(f_m(x) \to f(x) \) as \(m \to \infty \) for every number \(x \) in \([a, b] \) or in \([a, b] - S \), where \(S \) is a subset of \([a, b] \) of outer \(g \)-length 0, and \(f_m(x-) \to f(x-) \) as \(m \to \infty \) if \(a < x \leq b \) and \(g(x) > g(x-) \), and \(f_m(x+) \to f(x+) \) as \(m \to \infty \) if \(a \leq x < b \) and \(g(x+) > g(x) \).

We see by Theorem C that if \(f \) is \(g \)-summable on \([a, b] \), then there exists a number \(J \) such that if \(\{f_m\}_{m=1}^{\infty} \) is any sequence of simple step-functions having the above properties:

\[
\int_{a}^{b} f_m \, dg \to J \quad \text{as } m \to \infty.
\]

We define the number \(J \) to be the integral \(\int_{a}^{b} f \, dg \) on \([a, b] \) of \(f \) with respect to \(g \).

It is easy to show that if \(\{f_m\}_{m=1}^{\infty} \) is a uniformly bounded sequence of \(g \)-summable functions converging in the manner described in the above definition to a function \(f \), then \(f \) is \(g \)-summable and \(\int_{a}^{b} f_m \, dg \to \int_{a}^{b} f \, dg \) as \(m \to \infty \).

Remark added in proof. My attention has been called to the fact that the definition I accredited to Lane was given by H. L. Smith, On the existence of the Stieltjes integral (Trans. Amer. Math. Soc. vol. 27 (1925) pp. 491–495).

Bibliography

De Paul University