MORE ON THE CONTINUITY OF THE REAL ROOTS OF AN ALGEBRAIC EQUATION

J. R. ISBELL

Melvin Henriksen and I published [1] an incomplete restoration of the following theorem announced by Hewitt [2]:

Theorem. Let \(C(X, R) \) be the ring of all continuous real-valued functions on a completely regular space \(X \); let \(M \) be a maximal ideal in \(C(X, R) \). The residue field \(C(X, R)/M = C_M \) is real closed.

Hewitt’s proof is defective only in showing a root for every polynomial of odd degree in \(C_M \); we used other results of [2] and the Tietze extension theorem, i.e., we proved the theorem for normal \(X \). This note recovers the whole theorem.

Proof of Theorem. After Hewitt’s work [2], it remains to show that every polynomial \(P(x, w) = w^{2n+1} + \sum_{k=0}^{2n} a_k(x)w^k, a_k \in C(X, R), \) has a root in \(C_M \). If \(f \in C(X, R), \) let \(Z(f) = [x \in X | f(x) = 0], Z(M) = [Z(f) | f \in M]. \) Decompose the real part of the root of \(P \) into continuous single-valued functions, \(\phi_1, \ldots, \phi_{2n+1}, \) as in [1]. Let \(R_\ast = [x \in X | P(x, \phi_\ast(x)) = 0]. \) Since the \(R_i \) cover \(X \) and \(Z(M) \) has the finite intersection property, some \(R_\ast \) meets every element of \(Z(M). \) Then by [2, Theorem 36], \(R_\ast \subseteq Z(M); \) that is, \(P(x, \phi_\ast(x)) \equiv 0 (\mod M). \)

References

Princeton University

Presented to the Society, October 24, 1953; received by the editors September 21, 1953.