1. Introduction. Let f be a mapping of a space A onto a space B. Let $N(y, f, A, B)$, $y \in B$, be the number of points in $f^{-1}(y)$. Let k be a positive integer. According to G. T. Whyburn [2], f is said to be k-fold irreducible provided that for $y \in B$, $N(y, f, A, B) \geq k$, and if F is a closed proper subset of A, then for some $z \in B$, $N(z, f|F, F, B) < k$. It should be noted that if f is 1-fold irreducible, then f is strongly irreducible in accordance with the terminology of [3] or irreducible in accordance with [2].

In this paper there is introduced the notion of a k-fold irreducible decomposition of a space relative to a mapping as follows.

Definition. Let f be a mapping defined on a compact space A onto a space B. A is said to possess a k-fold irreducible decomposition relative to f provided that there exists a decomposition $A = \sum_{i=1}^{k} A_i$ where each A_i is a nonempty closed subset of A and the decomposition satisfies the following conditions:

(i) A_i^0, the interior (rel. to A) of A_i, is dense in A_i.
(ii) $A_i \cdot A_j^0 = 0$, $i \neq j$.
(iii) $f(A_i) = B$ and $f|A_i$ is an irreducible mapping.

We further define $D(k, f, A, B)$ to be the set of all $x \in A$ for which $N(f(x), f, A, B) = k$. When there is no chance of confusion we shall write $D(k, f, A, B)$ as $D(k, f, A)$.

In 1.1 through 1.5 some definitions and results of G. T. Whyburn which will be needed are listed. In the remaining part of §1, we obtain results concerning k-fold irreducible decomposition of a space relative to certain types of mappings. One of the principal results (1.13) states that if f is a quasi-interior mapping defined on a compact space or a quasi-monotone mapping defined on a locally connected continuum, then the set of points D at which f is exactly k-to-one is dense in A if and only if A has a k-fold irreducible decomposition relative to f. A corollary of this theorem is that for the same hypothesis as the theorem, if for each $x \in A$, $f^{-1}(f(x))$ consists of at least k points, then f is k-fold irreducible if and only if A has a k-fold irreducible decomposition relative to f.
In §2, some examples of k-fold irreducible decomposition are given. It is shown that if f is a quasi-monotone mapping defined on a boundary curve A such that for each $x \in A$, $f^{-1}f(x)$ consists of at least k points, then f is k-fold irreducible if and only if f is k-to-one. Also, if f is a quasi-monotone mapping defined on a boundary curve which has a k-fold irreducible decomposition relative to f, then f is a light open mapping. Finally, it is shown that for an open-mapping f defined on a compact 2-manifold A, A has a k-fold irreducible decomposition relative to f if and only if the degree of f, as defined in [3], is k.

For a general reference to topological terms and results used in this paper see [3]. All spaces are assumed to be metric.

1.1. For any set A in a metric space and any positive k, define:
$$e_k(A) = \inf \left\{ \max \delta(A_i) \right\}$$
for all decompositions $A = \sum_{i=1}^{k} A_i$ of A into k nonempty subsets A_i. Here δ stands for diameter.

For f, a mapping defined on a metric space X, define
$$e_k(x) = e_k(f^{-1}f(x)), \quad x \in X.$$

1.2. If the mapping f defined on X generates an upper-semi-continuous decomposition of X, the function $e_k(x)$ is upper-semi-continuous.

Hence the theorem applies if X is compact.

1.3. $e_k(x) = 0$ if and only if $N(f(x), f, A) \leq k$.

1.4. Let f be a mapping defined on a compact space A. Suppose for each $x \in A$, $N(f(x), f, A) \geq k$. Then f is k-fold irreducible if and only if the set of points $x \in A$ such that $N(f(x), f, A) = k$ is dense in A (i.e. $D(k, f, A)$).

Corollary 1. f is irreducible if and only if the set D of all points $x \in A$ with $x = f^{-1}f(x)$ is dense in A.

Corollary 2. If f is open, then f is k-fold irreducible if and only if f is k-to-one.

Corollary 3. If f is open, then f is irreducible if and only if f is a homeomorphism.

1.5. Let f be a mapping defined on a compact space A onto a space B. Then there exists a compact set $A' \subset A$ such that $f(A') = B$ and $f|A'$ is an irreducible mapping.

1.6. Theorem. Let f be a mapping defined on a compact space A onto a space B. If f possesses a k-fold irreducible decomposition relative to f, then $D(k, f, A, B)$ is dense in A.

Proof. We first prove the following.
(*) Let U be an open set in A and let $e > 0$. Then there exists an open set Q in U such that (i) if $q \in Q$, then $f^{-1}(q)$ contains at least k points and (ii) for each $q \in Q$, $e_k(q) < e$, where $e_k(q)$ is as defined in 1.1.

Toward the end of proving this statement, let $A = \sum_{i=1}^k A_i$ be a k-fold irreducible decomposition relative to f and we suppose further that this decomposition is labeled so that A_1. $U \neq 0$. Since A_1^0 is dense in A_1, $A_1^0 \cdot U \neq 0$. Let V_1 be a nonempty open subset of $U \cdot A_1^0$ such that $0 < \delta(V_1) < e$. Let $a_1 \in V_1 \cdot D(1, f, A_1, B)$. It is easy to prove that there exists an open set W_1 in B which contains $f(a_1)$ and such that $f^{-1}(W_1) \cdot A_1 \subset V_1$. Now $f^{-1}(W_1) \cdot A_2^0$ is an open nonempty subset of A_2. Let V_2 be a nonempty subset of $f^{-1}(W_1) \cdot A_2^0$ such that $\delta(V_2) < e$. Let $a_2 \in V_2 \cdot D(1, f, A_2, B)$. Proceeding as before, there exists an open set W_2 in W_1 such that $W_2 \supset f(a_2)$ and $f^{-1}(W_2) \cdot A_2 \subset V_2$. Note that at this stage $f^{-1}(W_2) \cdot A_i$, $i = 1, 2$, is such that $f[f^{-1}(W_2) \cdot A_i] = W_2$ and $\delta(f^{-1}(W_2) \cdot A_i) < e$.

It is easy to see then by induction that we are able to obtain a set W_k in B such that for $Q_i = f^{-1}(W_k) \cdot A_i$, $i = 1, 2, 3, \ldots, k$, it is true that $f(Q_i) = W_k$ and $\delta(Q_i) < e$. It is now easy to verify that if we set $Q = Q_1$, then Q satisfies (i) and (ii) of our preliminary statement (*).

Let D_e be the set of all points $x \in A$ such that $e_k(x) < e$. By (ii) of *, D_e is dense in A for each $e > 0$. Since e_k is upper semi-continuous it follows that the set D of all points x in A such that $e_k(x) = 0$ is also dense in A. By 1.3 for each $x \in D$, $f^{-1}(x)$ contains at most k points. Next let U be an open set in A. There exists an open set Q in U such that Q satisfies (i) and (ii) of *. Since D as defined above is dense in A, there exists an $x \in Q \cdot D$. From the properties of Q and D it follows that $f^{-1}(x)$ consists of exactly k points. Hence $x \in D(k, f, A, B)$ and $D(k, f, A, B)$ is dense in A.

The following is easy to verify.

1.7. Let f be an open mapping of a space A onto a space B and suppose K is a compact subset of A such that $f(K) = B$ and $f|K$ is an irreducible mapping. Let K^0 be the interior (relative to A) of K. Then if $x \in K^0$, $f^{-1}(x) \cdot K$ consists of exactly one point.

1.8. Let f be an open mapping defined on a compact space A onto a space B such that $D(k, f, A)$ is dense in A. Then,

(a) $d(f) = k$ where $d(f) = \sup [d(f(x), f, A)]$ for $x \in A$.
(b) $D(k, f, A)$ is open in A.
(c) f is a local homeomorphism at each x in $D(k, f, A)$.
(d) If F is a closed subset of A such that $f(F) = B$ and $f|F$ is irreducible, then F^0, the interior of F (rel. to A), is dense in F.
(e) Suppose E is a closed subset of A such that $f(E) = B$ and h is a
positive integer such that \(1 < h \leq k\), \(D(h, f \mid F, F)\) is dense in \(F\), and \(F^0\) is dense in \(F\). Then there exists a decomposition \(F = X + Y\) such that \(X\) and \(Y\) are closed: \(X^0\) is dense in \(X\); \(Y^0\) is dense in \(Y\); \(X^0 \cdot Y^0 = 0\); \(f(X) = f(Y) = B\); \(f \mid X\) is irreducible; \(D(h - 1, f \mid Y, Y)\) is dense in \(Y\).

The proofs of (a), (b), and (c) follow easily from the openness of \(f\).

Proof. (d). Let us suppose that \(F^0\) is not dense in \(F\). Then there exists an open set \(U \subset A\) such that \(U \cdot F \neq 0\) and \(U \cdot F^0 = 0\). Then either \(U \cdot F \cdot D(k, f, A)\) is empty or not and we show that either case leads to a contradiction.

Suppose \(U \cdot F \cdot D(k, f, A) \neq 0\). Then, by (b), \(W = U \cdot D(k, f, A)\) is a nonempty open set which intersects \(F\) and since \(D(1, f \mid F, F)\) is dense in \(F\), there exists a point \(y_1 \in W \cdot F \cdot D(1, f \mid F, F)\). Let \(y_1 + y_2 + y_3 + \cdots + y_k = f^{-1}(y_1)\) where we note that \(y_2 + y_3 + \cdots + y_k \subset A - F\).

By (c), \(f\) is a local homeomorphism at each \(y_i\). Hence, there exist open sets \(U_i, i = 1, 2, \ldots, k\), such that: \(U_i \cdot U_j = 0\) for \(i \neq j\), \(f(U_i) = f(U_j)\), \(f^{-1}(U_i) = \sum_{i=1}^{k} U_i\), \(f \mid U_i\) is a homeomorphism, \(U_i \subset U\), \(U_i \subset A - F\) for \(i = 2, 3, \ldots, k\). Since \(U \cdot F = 0\), there exists a \(q \in U_1 \cdot (A - F)\), whence \(f^{-1}(q) \cdot F = 0\) and we have a contradiction since \(f(F) = B\).

Next, consider the case in which \(U \cdot F \cdot D(k, f, A, B) = 0\). There exists a \(y \in U \cdot F \cdot D(1, f \mid F, F)\). Since \(D(k, f, A)\) is dense in \(A\), there exists a sequence \(y_i \rightarrow y\) such that \(y_i \in U \cdot D(k, f, A, B)\). By the hypothesis for this case, none of the \(y_i\)'s are in \(F\). However, since \(f(F) = B\) and since \(F\) is compact, there exists a sequence \(x_n \rightarrow z \in F\) such that \(x_n \in F\) and \(f(x_n) = f(y_n)\). Then since \(z \in F\) and \(y \in F \cdot D(1, f \mid F, F)\), it follows that \(z = y\). Notice that if \(y_n \in D(k, f, A, B)\), each point of \(f^{-1}(y_n)\) is also. Hence for some \(j, x_j \in U \cdot F \cdot D(k, f, A, B)\), a contradiction to the hypothesis for this case.

Proof of (e). There exists a closed subset \(X \subset F\) such that \(f(X) = B\) and such that \(f \mid X\) is an irreducible mapping. Let \(Y\) be the closure of \(F - X\). We first show that \(f(Y) = B\). Suppose \(f(Y) \neq B\). Then \(f^{-1}(B - f(Y))\) is a nonempty open set such that \(f^{-1}(B - f(Y)) \cdot Y = 0\). This leads to a contradiction, for by (d), \(X^0\) the interior (rel. to \(A\)) of \(X\) is dense in \(X\) and further by hypothesis \(D(h, f \mid F, F)\) is dense in \(F\). Hence there exists an \(x \in f^{-1}(B - f(Y)) \cdot X^0 \cdot D(h, f \mid F, F)\). By 1.7, \(f^{-1}(x) \cdot X = x\). Hence \(f^{-1}(x) \cdot (F - X)\) must contain \(h - 1\) points. Thus, \(f^{-1}(x) \cdot Y \neq 0\) and we have a contradiction.

We proceed to prove that \(D(h - 1, f \mid Y, Y)\) is dense in \(Y\). First note that \(Y^0\), the interior (rel. to \(A\)) of \(Y\) is dense in \(Y\). Hence, we need show only that \(D(h - 1, f \mid Y, Y)\) is dense in \(Y^0\). Let \(U\) be an open set in \(Y^0\). Since \(X^0\) is dense in \(X\) and \(f(X) = B\), then \(f(X^0)\) is dense in \(B\). Then, since \(f\) is open, it is easy to see that \(f^{-1}(f(X^0))\) is dense in \(A\). Hence \(U \cdot f^{-1}(f(X^0))\) is a nonempty open subset and since
\(D(h, f | F, F)\) is dense in \(F\), it follows that there exists \(x \in U \cdot f^{-1}(X^0) \cdot \overline{D(h, f | F, F)}\). By 1.7, \(f^{-1}\cdot f(x) \cdot X\) is a single point, whence since \(x \in \overline{D(h, f | F, F)}, x \in \overline{D(h-1, f | Y, Y)}\).

1.9. Let \(f\) be an open mapping defined on a compact space \(A\) onto a space \(B\). Let \(k\) be a positive integer. Then if \(D(k, f, A)\) is dense in \(A\), there exists a \(k\)-fold irreducible decomposition of \(A\) relative to \(f\).

Proof. If \(k = 1\), the theorem is trivial. Let \(k > 1\). By 1.8 (e), there exists a decomposition \(A = A_1 + A_2\) such that \(A_1, A_2\) are closed subsets of \(A\), \(A_1^0 \cdot A_2^0 = 0\), \(f(A_1) = f(A_2) = B\), \(f|A_1\) is irreducible, and \(D(k-1, f|A_2, A_2)\) is dense in \(A_2\). Let \(L\) be the collection of all integers \(m\) between 2 and \(k\) inclusive satisfying the condition that there exists a decomposition \(A = \sum_{i=1}^{m} X_i\) with the following properties: (1) each \(X_i\) is closed; (2) \(X_i^0 \cdot X_j^0 = 0\) for \(i \neq j\); (3) \(f(X_i) = B\) and \(f|X_i\) is irreducible for \(i = 1, 2, 3, \ldots, m-1\); (4) \(f(X_m) = B\) and \(f|X_m\) satisfies the condition that \(D(k-m+1, f|X_m)\) is dense in \(X_m\); (5) \(X_i^0\) is dense in \(X_i\) for \(i = 1, 2, \ldots, m\). Since \(A = A_1 + A_2\) satisfies the above conditions, \(2 \in L\). Let \(j = \max L\). Now \(j < k\), for suppose \(j < k\). Then there exists a decomposition \(A = Y_1 + Y_2 + \cdots + Y_j\) satisfying conditions (1) through (5). But \(f(Y_j) = B\) and \(D(k-j+1, f|Y_j)\) is dense in \(Y_j\) where it is to be noted that \(k-j+1 \geq 2\). Hence 1.8 (e) applies to \(f|Y_j\) and there exists a decomposition \(Y_j = Y_j^* + Y_j^{*+1}\) such that the following conditions are satisfied: \(f(Y_j^*) = f(Y_j^{*+1}) = B\); \(f|Y_j^*\) is irreducible; \(f|Y_j^{*+1}\) is such that \(D(k-j, f|Y_j^{*+1})\) is dense in \(Y_j^{*+1}\); \(Y_j^* \cdot Y_j^{*+1} = 0\); \(Y_j^{*+1}\) is dense in \(Y_j^{*+1}\). But then \(A = Y_1 + Y_2 + \cdots + Y_j + Y_j^{*+1}\) satisfies the 5 conditions and \(\max L \geq j+1\), a contradiction.

The following remark is easy to verify.

1.10. Let \(f\) be a mapping defined on a compact space \(A\) and suppose \(f_1\) and \(f_2\) are any continuous factors of \(f\). Then \(f\) is irreducible if and only if \(f_1\) and \(f_2\) are irreducible mappings.

1.11. Let \(f\) be a mapping defined on a compact space \(A\) onto a space \(B\) and let \(f_1\) and \(f_2\) be monotone-light factors of \(f\). If \(D(k, f, A, B)\) is a dense subset of \(A\), then \(D(1, f_1, A, f_1(A))\) is a dense subset of \(A\) and \(D(k, f_2, f_1(A), B)\) is a dense subset of \(f_1(A)\).

Proof. Because of the properties of the monotone-light factors of a mapping, \(D(k, f, A, B) \subseteq D(1, f_1, A, f_1(A))\). Hence \(D(1, f_1, A, f_1(A))\) is dense in \(A\). Also since \(D(k, f, A, B)\) is dense in \(A\), \(f_1(D(k, f, A, B))\) is dense in \(f_1(A)\). But for each \(z \in f_1(D(k, f, A, B))\), \(N(f_2(z), f_2, f_1(A), B) = k\). Hence \(f_1(D(k, f, A, B)) \subseteq D(k, f_2, f_1(A), B)\) and thus \(D(k, f_2, f_1(A), B)\) is also dense in \(f_1(A)\).

1.12. Let \(f\) be a mapping on a compact space \(A\) onto a space \(B\) and suppose \(f_1, f_2\) are monotone-light open factors of \(f\). Then if \(D(k, f, A, B)\) is dense in \(A\), \(A\) has a \(k\)-fold irreducible decomposition relative to \(f\).
Proof. Let \(f_1(A) = X \). By 1.11, \(D(1, f_1, A, X) \) is dense in \(A \) and \(D(k, f_2, X, B) \) is dense in \(X \). Hence \(f_1 \) is irreducible and, by 1.9, \(X \) has a \(k \)-fold irreducible decomposition relative to \(f_2 \). Let \(X = \sum_{i=1}^{k} X_i \) be a \(k \)-fold decomposition of \(X \) relative to \(f_2 \). Let \(A_i \), be the closure of \(f_1^{-1}(X_i) \) for \(i = 1, 2, \ldots, k \). We show that \(\sum_{i=1}^{k} A_i \) is a \(k \)-fold decomposition of \(A \) relative to \(f_1 \). Since \(f_1(\sum_{i=1}^{k} A_i) = X \) and \(f_1 \) is irreducible, it follows that \(\sum_{i=1}^{k} A_i = A \). From the definition of \(A_i \), \(f_1^{-1}(X_i) \) is dense in \(A_i \). Then since \(A_i \supseteq f_1^{-1}(X_i) \), \(A_i \) is also dense in \(A_i \). Further, it is easy to see that \(A_i \cdot A_j = 0 \) for \(i \neq j \). Finally, we show that \(f(A_i) = B \) and \(f \mid A_i \) is an irreducible mapping. \(f_1(A_i) \supseteq f_1 f_1^{-1}(X_i) = X_i \). Since \(f_1(A_i) \) is closed and \(X_i \) is dense in \(X_i \), \(f_1(A_i) = X_i \). So \(f f_1(A_i) = f_2(X_i) = B \). Also, \(A_i \cdot D(1, f_1, A, X) \subseteq D(1, f_1 \mid A_i, A_i, X_i) \). Then since \(A_i \cdot D(1, f_1, A, X) \) is dense in \(A_i \), so also is \(D(1, f_1 \mid A_i, A_i, X_i) \). Thus \(f_1 \mid A_i \) is irreducible and since \(f_2 \mid X_i \) is also, it follows that \(f \mid A_i \) is as well.

As a corollary to the above proof we have the following

Corollary. If \(f \) is a mapping defined on a compact space \(A \) with monotone light open factorization \(f = f_2 f_1 \) and if \(f_1 \) is irreducible and the space \(f_1(A) \) possesses a \(k \)-fold irreducible decomposition relative to \(f_2 \), then \(A \) possesses a \(k \)-fold irreducible decomposition relative to \(f \).

By using 10.4 and 10.41 of [4] and 1.12 and 1.6 we obtain the

1.13. **Theorem.** Let \(f \) be a quasi-interior mapping defined on a compact space or a quasi-monotone mapping defined on a locally connected continuum. Then the set of points \(D \) at which \(f \) is exactly \(k \)-to-one is dense in \(A \) if and only if \(A \) has a \(k \)-fold irreducible decomposition relative to \(f \).

Corollary. Under the same hypothesis as the theorem, if for each \(x \) in \(A \), \(f^{-1}(x) \) consists of at least \(k \) points, then \(f \) is \(k \)-fold irreducible if and only if \(A \) has a \(k \)-fold irreducible decomposition relative to \(f \).

2. Examples and applications.

2.1. Let \(f \) be an irreducible mapping defined on a compact space \(A \) which admits a monotone light-open factorization \(f = f_2 f_1 \). Then \(f \) is monotone.

Proof. By 1.10, \(f_2 \) is irreducible and hence by Corollary 3 of 1.4, \(f_2 \) is a homeomorphism. Hence \(f \) is monotone.

In preparation for the next result we prove the following lemma.

2.2. Let \(f \) be a mapping of a simple closed curve \(A \) onto a simple closed curve \(B \). Then \(f \) is monotone if and only if the set \(D \) of points \(x \) in \(B \) for which \(f^{-1}(x) \) is a single point is dense in \(B \).
Proof. If f is monotone it is easy to see that D is dense in B. Conversely, suppose D is dense in B and let $p \in B$. Since D is dense in B, we can find sequences $p_i \to p$ and $p_i^* \to p$ such that p is between p_i and p_i^* for each i and such that all the p_i's and p_i^*'s are in D. We may suppose that $\text{arc } (p_i p_i^*) \subseteq \text{arc } (p_{i+1} p_{i+1}^*)$ for each i. Further it is easy to prove that for each i, $f^{-1}(\text{arc } (p_i p_i^*))$ is an arc. Now since $p = \prod_{i=1}^{\infty} \text{arc } (p_i p_i^*)$ and since $\prod_{i=1}^{\infty} f^{-1}(\text{arc } (p_i p_i^*))$ is connected it follows that $f^{-1}(p) = f^{-1}(\prod_{i=1}^{\infty} \text{arc } (p_i p_i^*)) = \prod_{i=1}^{\infty} f^{-1}(\text{arc } (p_i p_i^*))$ is connected and hence f is monotone.

2.3. Let f be a quasi-monotone mapping defined on a boundary curve A such that for each x in A, $f^{-1}(x)$ consists of at least k points. Then f is k-fold irreducible if and only if f is k-to-one.

Proof. We prove the necessity. Let f_1 and f_2 be monotone, light open factors of f. If f is k-fold irreducible, then f_1 is an irreducible monotone mapping and hence since A is a boundary curve, it is clear that f_1 must be one-to-one and hence a homeomorphism. Then f_2 is k-fold irreducible and hence since f_2 is open f_2 must be k-to-one. The converse is obvious.

The next example follows easily from 1.13 and a similar argument to that used in 2.3.

2.4. Let f be a quasi-monotone mapping defined on a boundary curve A. Then if A has a k-fold irreducible decomposition relative to f, f is a light-open mapping.

The next result follows from 2.4 and a theorem of G. T. Whyburn for open mappings defined on a simple closed curve. See X, 1.2 in [3].

2.5. Let f be a quasi-monotone mapping of A onto B where A and B are simple closed curves. Then f is k-fold irreducible (or equivalently in this case, A has a k-fold irreducible decomposition relative to f) if and only if f is topologically equivalent to the transformation $w = z^k$ defined on the circle $|z| = 1$.

The next result is a consequence of X, 6.3 in [3] and 1.8 (a) and 1.13.

2.6. Let f be an open mapping defined on a compact 2-manifold A. Then A has a k-fold irreducible decomposition relative to f if and only if the degree (as defined in [3]) is k.

References

G. T. Whyburn