ON THE METRIZABILITY OF THE BUNDLE SPACE

D. O. ETTER AND JOHN S. GRIFFIN, JR.¹

It has been shown by Yu. M. Smirnov (see [1, p. 13, Theorem 3]) that a Hausdorff space X is metrizable if and only if X is paracompact and has an open cover each of whose members is metrizable.

Using this, we prove: If \(\{X, B, \pi, Y, \mathcal{U}, \phi, G\} \) is a fibre bundle (see [2, p. 7]) whose base space B and fibre Y are metrizable, then the bundle space X is also metrizable.

First, if B and Y are metrizable, then X is Hausdorff and has an open cover each of whose members is metrizable, namely \(\{\pi^{-1}(U) \mid U \in \mathcal{U}\} \), since if $U \in \mathcal{U}$ then $U \times Y$, and hence $\pi^{-1}(U)$, is metrizable.

Second, X is paracompact, for let \mathcal{C} be any open cover for X. Let \mathcal{G} be a locally finite refinement of \mathcal{U}, and let \mathcal{W} be a closure refinement of \mathcal{G} which is also locally finite; define $\lambda: \mathcal{W} \to \mathcal{G}$ a function such that, for each W, if $W \in \mathcal{W}$ then $W \subseteq \lambda(W)$. Let for each $V \in \mathcal{G}$

\[\mathcal{D}_V = \{ C \cap \pi^{-1}(V) \mid C \in \mathcal{C} \} \]

and let \mathcal{D}_V^* be a locally finite refinement of \mathcal{D}_V (this exists, since $\pi^{-1}(V)$ is metric, hence paracompact, for each $V \in \mathcal{G}$). For $W \in \mathcal{W}$ define

\[\mathcal{E}_W = \{ D \cap \pi^{-1}(W) \mid D \in \mathcal{D}_V^* \} \]

and let $\mathcal{F} = \bigcup_{W \in \mathcal{W}} \mathcal{E}_W$. Clearly \mathcal{F} refines \mathcal{C}, and it is thus sufficient to show that \mathcal{F} is locally finite.

Let $x \in X$; then since \mathcal{W} is locally finite, so is $\{\pi^{-1}(W) \mid W \in \mathcal{W}\}$; therefore there is a neighborhood A of x which meets only a finite number of members of $\{\pi^{-1}(W) \mid W \in \mathcal{W}\}$, say $\pi^{-1}(W_1), \ldots, \pi^{-1}(W_n)$. For $1 \leq i \leq n$ define B_i a neighborhood of x as follows:

1. If x is a member of $\pi^{-1}(W_i)$ let B_i be a neighborhood of x which meets only a finite number of members of \mathcal{E}_{W_i};

2. If x is a member of the boundary of $\pi^{-1}(W_i)$ let B_i be a neighborhood of x which meets only a finite number of members of $\mathcal{D}_{\lambda(W_i)}^*$, hence only a finite number of members of \mathcal{E}_{W_i};

3. If x is not in the closure of $\pi^{-1}(W_i)$ let B_i be a neighborhood of x which meets only a finite number of members of \mathcal{E}_{W_i};

Presented to the Society, November 28, 1953; received by the editors October 22, 1953.

¹ Mr. Etter is a National Science Foundation Fellow. Mr. Griffin is employed under Contract N7-onr-434, Task Order III, Navy Department, Office of Naval Research.
x which does not meet $\pi^{-1}(W_i)$, hence which meets no members of \mathcal{E}_{W_i}.

Then $A \cap \bigcap_{i=1}^{n} U_i$ is a neighborhood of x which meets only a finite number of members of \mathcal{J}, since it meets only members of $\mathcal{E}_{W_1}, \ldots, \mathcal{E}_{W_n}$, and at most a finite number of each of these.

References

The Tulane University of Louisiana