The Lie algebra of a smooth manifold

Authors:
M. E. Shanks and Lyle E. Pursell

Journal:
Proc. Amer. Math. Soc. **5** (1954), 468-472

MSC:
Primary 09.1X

DOI:
https://doi.org/10.1090/S0002-9939-1954-0064764-3

MathSciNet review:
0064764

Full-text PDF

References | Similar Articles | Additional Information

**[1]**I. Gelfand and A. Kolmogoroff,*On rings of continuous functions on topological spaces*, C. R. (Doklady) Acad. Sci. URSS. vol. 22 (1939) pp. 11-15.**[2]**M. H. Stone,*Applications of the theory of Boolean rings to general topology*, Trans. Amer. Math. Soc. vol. 41 (1937) pp. 375-481. MR**1501905****[3]**E. Hewitt,*Rings of real-valued continuous functions*. I, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 45-99. MR**0026239 (10:126e)****[4]**L. E. Pursell,*Algebraic structures associated with smooth manifolds*, Thesis, Purdue University, 1952.**[5]**C. Chevalley,*Theory of Lie groups*, Princeton, 1946.**[6]**H. Cartan,*Notions d'algèbre differential*, Colloque de Topologie, Bruxelles, 1950, pp. 15-27. MR**0042426 (13:107e)****[7]**M. E. Shanks,*Rings of functions on locally compact spaces*, Bull. Amer. Math. Soc. Abstract 57-4-365.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
09.1X

Retrieve articles in all journals with MSC: 09.1X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1954-0064764-3

Article copyright:
© Copyright 1954
American Mathematical Society