Corollary. If \(k = 1 \) and \(*e_0x^2e = x \), then \(*axe_0b = *ae_0xb \) for any \(a \) and \(b \).

Proof.
\[
*axe_0b = *a*e_0e,e_{r-1}xe_0b \quad \text{(by (2) with } m = 1) \\
= *ae_0*e_{r-1}xe_0b \\
= *ae_0xb \quad \text{(by Theorem Q with } m = 1) .
\]

UNIVERSITY OF BRISTOL

TWO THEOREMS ON FINITELY GENERATED GROUPS

EUGENE SCHENKMAN

Let \(G \) be a group generated by a finite subgroup \(H \) and an element \(b \) of finite order. If \(H \) commutes elementwise with \(b \) (for this we shall write \([h, b] = e\) for every \(h \in H \) where \([h, b]\) designates \(hbh^{-1}b^{-1} \)), then clearly \(G \) is finite and \(b \) is in the center of \(G \).

We consider here the case where, for every \(h \in H \), \([h, b]b = e\), and prove the following theorem:

Theorem. Let \(G \) be generated by the finite subgroup \(H \) and the element \(b \) of finite order and, for every \(h \in H \), let \([h, b]b = e\). Then \(G \) is finite and \(b \) is in the nil radical of \(G \).

Proof. For \(i = 1, 2, \ldots, n \) let \(h_i \) be the elements of \(H \). Then \(h_i^{-1}bh_i \) are all the conjugates of \(b \); for \(bh^{-1}bh^{-1} = h^{-1}bh \) by virtue of the hypothesis \([h, b]b = e\).

It follows from the fact that a finite set of conjugates generate a finite normal subgroup (cf. [1]) that \(b \) is contained in a finite normal subgroup \(K \) of \(G \). But \(H \) is finite and hence so also is \(G/K \); and then finally \(G \) is finite.

Furthermore since \(b \) is in the center of \(K \), \(b \) is in the nil radical of \(G \) as was asserted.

We can deduce another result from the fact that \([g, b]b = e\) for every \(g \in G \) implies that \(b \) is in the center of a normal subgroup of \(G \).

Theorem. Let \(G \) be a finitely generated group with the property that if \(b_1, \ldots, b_n \) are the generators of \(G \), then \([g, b_i]b_i = e\) for every \(g \in G \) and for \(i = 1, 2, \ldots, n \). Then \(G \) is nilpotent of class at most \(n \). If furthermore the \(b_i \) are of finite order then \(G \) is finite.

Received by the editors September 13, 1953.
Proof. For \(i=1, 2, \cdots, n\) let \(B_i\) be the normal subgroup of \(G\) in which \(b_i\) is central. Since the \(B_i\) are normal subgroups of \(G\), so is each of the intersections \(B_{i_1} \cap \cdots \cap B_{i_r}\) normal in \(G\). For \(j=1, \cdots, n\) let \(A_j\) represent the subgroup of \(G\) generated by the product of all possible intersections of \(j\) of the \(B_i\) at a time; i.e., \(A_1 = B_1 B_2 \cdots B_n\), \(A_2 = (B_1 \cap B_2)(B_1 \cap B_3) \cdots (B_{n-1} \cap B_n)\), etc., and \(A_n = B_1 \cap B_2 \cap \cdots \cap B_n\).

Then \(A_n\) is in the center of \(G\); for \(A_n\) commutes elementwise with all the generators of \(G\). And for each \(r=1, \cdots, n\), \(A_{r-1}/A_r\) is in the center of \(G/A_r\). For each component \(B_{i_1} \cap \cdots \cap B_{i_{r-1}}\) commutes elementwise with \(b_{i_1}, \cdots, b_{i_{r-1}}\) and \((B_{i_1} \cap \cdots \cap B_{i_{r-1}}) \cap B_i \subset A_r\); hence modulo \(A_r\) each component of \(A_{r-1}\) is in the center of \(G/A_r\) and consequently \(A_{r-1}/A_r\) is in the center of \(G/A_r\) as asserted. Hence \(G\) is nilpotent of class at most \(n\). The finiteness of \(G\) follows immediately from this if the \(b_i\) are of finite order.

Corollary. If \(G\) is a finitely generated group all of whose elements have order 3, then \(G\) is finite (cf. [2]).

For let \(a\) and \(b\) be any two elements of \(G\). Then \([\partial b, a]a = bab\partial aba\^2b\^2a\^2 = (bab)(bab)(b\^2a\^2)(b\^2a\^2)(b\^2a\^2) = e\).

Bibliography