A NOTE ON RINGS WITH CENTRAL NILPOTENT ELEMENTS

I. N. HERSTEIN

The theorem proved in this note, and its corollary, are designed to improve, and in a sense to bring to a more satisfactory completion, a theorem which we proved in [1].

We prove the

Theorem. Let R be a ring such that for every element x in R there exists an integer $n = n(x)$, and a polynomial $p(t) = p_n(t)$ with integer coefficients which depend on x, such that $x^{n+1}p(x) = x^n$. If further all the nilpotent elements of R are in the center of R, then R is commutative.

Proof. Since $x^{n+1}p(x) = x^n$, we have that $(x^2p(x) - x)x^{n-1} = 0$ (we can assume that $n > 1$ for this could always be achieved by multiplying both sides of the equation by x). Now, each term of $(x^2p(x) - x)^{n-1}$ involves x to a power which is at least $n - 1$; therefore $(x^2p(x) - x)^n = (x^2p(x) - x)(x^2p(x) - x)^{n-1} = 0$. Since $x^2p(x) - x$ is nilpotent, by assumption it must lie in the center of R. This is true for every x in R, so it follows from [2] that R is commutative.

Corollary. Let R be a ring such that every element of R generates a finite subring. If the nilpotent elements of R are all in the center, then R is commutative.

Proof. Since x in R generates a finite subring, $x^n = x^m$ for some $n > m$, so the corollary is immediate from the theorem. This corollary is a direct generalization of the second theorem in [1].

References

University of Pennsylvania

Received by the editors December 15, 1953.