A BOUND FOR A DETERMINANT WITH
DOMINANT MAIN DIAGONAL

J. L. BRENNER

In [3, pp. 13-14], Hadamard proved that if a square matrix

\[(a_{ij})_{1 \leq i, j \leq n}\]
satisfies the inequalities

\[a_{ii} \neq 0,\]
\[\sigma_i \left| a_{kk} \right| = \sum_{j \neq i} \left| a_{ij} \right|, \quad 0 \leq \sigma_i < 1 \quad (i = 1, 2, \ldots, n),\]

then the determinant of the matrix is different from 0. Upper and lower bounds have been given for the determinant of the matrix; see [4; 5; 6; 7].1 In this article, improvements are given to the bounds of [5; 6]. It is remarkable that the bound of [5] could be improved by using nothing more complicated than ratios already introduced in that article: the bound for \(|\det A| - |a_{11} \cdots a_{nn}|\) given there was asymptotically of the correct order in the \(l_j\) and \(r_j\). It is possible to improve the bounds of [1a] by the methods here given.

The following lemma is needed.

Lemma. Let \(A = (a_{ij})_{1 \leq i, j \leq n}\) be a matrix such that the relations (1) hold. Let \(b_{ij}\) be defined as \(a_{ij} - a_{i1}a_{1j}/a_{11}\). Then \((b_{ij})_{2 \leq i, j \leq n}\) has dominant main diagonal, and indeed the relations

\[\sigma_i \left| b_{ii} \right| \geq \sum_{j > i; j \neq i} \left| b_{ij} \right|, \quad \sigma_i \left| b_{ii} \right| \neq 0\]

hold for \(i = 2, 3, \ldots, n\).

This lemma states that the constant \(\sigma_i^j\) defined by the relation \(\sigma_i^j \left| b_{ii} \right| = \sum_{j > i; j \neq i} \left| b_{ij} \right|\) is no greater than the corresponding constant \(\sigma_i\). The fact that \(\det (b_{ij})\) is not 0 is established in [2].

Proof. The asserted inequalities follow from the hypotheses as follows.

Presented to the Society, May 1, 1954; received by the editors December 28, 1953.

References 1a, 1b, 6, 7 and 2 added subsequently. The author wishes to thank the referee for calling his attention to the last.
\[\sigma_i \mid b_{ii} \mid \geq \sigma_i \mid a_{ii} \mid - \sigma_i \mid a_{11}a_{ii}/a_{11} \mid \]
\[\geq \sum_{j > 1; j \neq i} \mid a_{ij} \mid + \mid a_{i1}/a_{11} \mid \left(\sum_{j > 1; j \neq i} \mid a_{ij} \mid + \mid a_{i1} \mid (1 - \sigma_i) \right) \]
\[\geq \sum_{j > 1; j \neq i} \mid a_{ij} \mid + \mid a_{i1}/a_{11} \mid \left(\sum_{j > 1; j \neq i} \mid a_{ij} \mid + \mid a_{i1} \mid (1 - \sigma_i) \right) \]
\[\geq \sum_{j > 1; j \neq i} \mid b_{ij} \mid . \] Similarly, \[\mid b_{ii} \mid > \sum_{j > 1; j \neq i} \mid b_{ij} \mid . \]

Theorem 1. Let \(A = (a_{ij})_{1 \leq i, j \leq n} \) be a square matrix satisfying (1). Then a bound for \(\det A \) is
\[\mid \det A \mid \geq \mid a_{11} \mid \prod_{i > 1} \left(\mid a_{ii} \mid - l_i + L_i \right), \]
where \(l_i = \sum_{j < i} \sigma_j \mid a_{ij} \mid ; L_i = \mid a_{ii}/a_{11} \mid \sum_{j > i} \mid a_{ij} \mid . \) Thus \(\mid a_{ii} \mid - l_i \) is automatically positive, and \(L_i \) is non-negative.

In both [5] and [6], a similar bound appears with \(L_i \) replaced by zero. Leaving this aside, the factor \(a_{ii} - l_i \) is still an improvement over the corresponding factor in [6], where \(l_i \) is replaced by the sum \(\sum_{j < i} \mid a_{ij} \mid , \) and is also an improvement over the corresponding factor in [5], where \(l_i \) is replaced by \(\sigma_i \sum_{j < i} \mid a_{ij} \mid , \) \(\sigma_i \) being the greatest of the \(\sigma_j \) with \(j \) not equal to \(i \). Even in this form, the statement can be improved to read that \(\sigma_i \) is the greatest of the \(\sigma_j \) with \(j \) less than \(i \).

This theorem is a special case of

Theorem 2. Let \(A = (a_{ij})_{1 \leq i, j \leq n} \) be a matrix such that relations (1) hold. A bound for \(\mid \det A \mid \) is given by the relation
\[(2) \mid \det A \mid \geq \prod_{i < k} \left(\mid a_{jj} \mid - r_j + R_j \right) \cdot a_{kk} \cdot \prod_{i > k} \left(\mid a_{jj} \mid - l_j + L_j \right), \]
where \(r_j, l_j, R_j, L_j \) are defined by the relations
\[r_j = \sum_{t > j} \sigma_t \mid a_{jt} \mid , \quad L_j = \mid a_{jk}/a_{kk} \mid \left(\sum_{t > j} \mid a_{kt} \mid + \sum_{t < k} \mid a_{kt} \mid \right), \]
\[R_j = \mid a_{jk}/a_{kk} \mid \sum_{t < j} \mid a_{kt} \mid , \quad l_j = \sum_{k \geq t < j} \sigma_t \mid a_{jt} \mid , \]
so that \(R_j \) and \(L_j \) are non-negative.

To prove Theorem 2, first reduce to 0 the nondiagonal elements of the \(k \)th row of \(A \) by adding an appropriate multiple of the \(k \)th column to the other columns. In the resulting matrix, call \(B \) the submatrix obtained by leaving out the \(k \)th row and the \(k \)th column. The \((i, j)\) element \(b_{ij} \) of \(B \) is \(a_{ij} - a_k a_{ik}/a_{kk} \) \((i \neq k, j \neq k)\). As an induc-
tion hypothesis, it is assumed that det B satisfies the relation
\[
|\det B| \geq \prod_{j<k} \left(|b_{jj}| - r'_j + R'_j \right) \cdot |b_{k+1,k+1}|
\]
(3)
\[
\cdot \prod_{j>k+1} \left(|b_{jj}| - l'_j + L'_j \right),
\]
where R'_j, L'_j are non-negative, and r'_j, l'_j are defined by the relations
\[
r'_j = \sum_{i>j; t=k} \sigma_t |b_{jt}|,
\]
\[
l'_j = \sum_{k<i<j} \sigma_t |b_{jt}|.
\]
The theorem follows from a set of three estimates, which are established below by applying Lemma 1. The first estimate is that provided by the relations
\[
|b_{k+1,k+1}| \geq |a_{k+1,k+1}| - |a_{k+1,k}| \left(\sigma_k |a_{kk}| - \sum_{t \neq k, k+1} |a_{kt}| \right)
\]
\[
= |a_{k+1,k+1}| - \sigma_k |a_{k+1,k}| + |a_{k+1,k}/a_{kk}| \sum_{t \neq k, k+1} |a_{kt}|.
\]
The second estimate concerns the factor $|b_{jj}| - l'_j$, when j exceeds $k+1$:
\[
|b_{jj}| - l'_j \geq |a_{jj}| - |a_{jk}/a_{kk}| \left(\sigma_k |a_{kk}| - \sum_{t \neq j, k} |a_{kt}| \right)
\]
\[
- \sum_{k<i<j} \sigma_t |b_{jt}|
\]
\[
\geq |a_{jj}| - \sum_{k<i<j} \sigma_t |a_{jt}| + |a_{jk}/a_{kk}| \sum_{t \neq j, k} |a_{kt}|
\]
\[
- |a_{jk}/a_{kk}| \sum_{k<i<j} \sigma_t |a_{kt}|
\]
\[
\geq |a_{jj}| - \sum_{k<i<j} \sigma_t |a_{jt}| + |a_{jk}/a_{kk}| \left(\sum_{t>j} + \sum_{i<k} \right) |a_{kt}|.
\]
Last, it is necessary to estimate the factor $|b_{jj}| - r'_j$ if j is less than k:
\[
|b_{jj}| - r'_j \geq |a_{jj}| - \sigma_k |a_{jk}| + |a_{jk}/a_{kk}| \sum_{t \neq j, k} |a_{kt}| - \sum_{j<i; t \neq k} \sigma_t |b_{jt}|
\]
\[
\geq |a_{jj}| - \sum_{j<i} \sigma_t |a_{jt}|
\]
\[
+ |a_{jk}/a_{kk}| \left(\sum_{t \neq j, k} |a_{kt}| - \sum_{j<i; t \neq k} \sigma_t |a_{kt}| \right)
\]
\[
\geq |a_{jj}| - \sum_{j<i} \sigma_t |a_{jt}| + |a_{jk}/a_{kk}| \sum_{i<j} |a_{kt}|.
\]
It will be observed that the above inequalities neglect certain terms which if retained would lead to an inequality slightly stronger than that of Theorem 2.

Theorem 3. Upper bounds for $|\det A|$ are the expressions obtained by mechanically reversing the four signs $-, +, -, +$, which appear on the right side of (2).

References

State College of Washington