SOME IMPLICATIONS OF SEMI-1-CONNECTEDNESS

ROBERT L. PLUNKETT

A topological space X is said to be semi-n-connected at a point $x \in X$ provided there exists an open set U containing x such that every Čech n-cycle on a compact subset of U bounds on X. (If X is regular, “a compact subset of” may be omitted.) If X is semi-n-connected at every point, then X is said to be semi-n-connected [1]. As shown in [1], if a space has a finite 1-dimensional Betti number, it is semi-1-connected, but the converse is not true. The purpose of this article is to prove certain “point set” properties implied by the hypothesis that the space is semi-1-connected.

In what follows it is assumed that X is a separable metric space. The coefficient group will be a field F.

Theorem 1. If a continuum X is semi-1-connected at $x \in X$, then there exists an open set V containing x such that, if Q is a region (connected open set) with $\overline{Q} \subset V$, then no continuum in $V - Q$ intersects two components of $F(Q)$. ($F(Q)$ shall mean $\overline{Q} - Q$ for any open set Q.)

Proof. Let V be an open set such that $x \in V$ and every Čech 1-cycle on V bounds on X. Suppose Q is a region with $\overline{Q} \subset V$ and that K is a continuum in $V - Q$ which intersects two components H_1 and H_2 of $F(Q)$. Let $x \in H_1 \cdot K$ and $y \in H_2 \cdot K$ and let U be an open set such that $K + \overline{Q} \subset U \subset \overline{U} \subset V$. The set $\{x\} + \{y\}$ generates a nonzero element w of the reduced zero dimensional group, $\tilde{H}_0(F(Q))$, since x and y belong to different components of $F(Q)$.

Consider the portion of the Mayer-Vietoris sequence for the triad $(\overline{U}; \overline{U} - Q, \overline{Q})$:

$$\xymatrix{ \tilde{f} : H_1(\overline{U}) \ar[r] & \tilde{H}_0(F(Q)) \ar[r]^h & \tilde{H}_0(\overline{Q}) \oplus \tilde{H}_0(\overline{U} - Q). }$$

The image of w under h is obtained as follows: if $i_1: F(Q) \to Q$ and $i_2: F(Q) \to \overline{U} - Q$ are inclusion mappings, then $h(w) = (i_{1*}(w), i_{2*}(w)) \in \tilde{H}_0(\overline{Q}) \oplus \tilde{H}_0(\overline{U} - Q)$. Since \overline{Q} is connected, $i_{1*}(w) = 0$, and since both x and y are in the same component of $\overline{U} - Q$, $i_{2*}(w) = 0$. Therefore, w...
is in the kernel of \(h \) and, by exactness, there exists a \(z \in H_1(U) \) such that \(g(z) = w \).

Consider now the Mayer-Vietoris sequence for the triad \((X; X - Q, \overline{Q}) \). If \(j: (U; U - Q, \overline{Q}) \rightarrow (X; X - Q, \overline{Q}) \) is inclusion, then \(j \) induces a homomorphism of the Mayer-Vietoris sequence of \((U; U - Q, \overline{Q}) \) into that of \((X; X - Q, \overline{Q}) \). By the definition of such a homomorphism, we have commutativity in the diagram below.

\[
\begin{array}{c}
\cdots \rightarrow H_1(X) \xrightarrow{g'} H_0(F(Q)) \rightarrow \tilde{H}_0(\overline{Q}) \oplus \tilde{H}_0(X - Q) \\
\downarrow j_* \quad (j|F(Q))_* \downarrow \\
\cdots \rightarrow H_1(U) \xrightarrow{g} \tilde{H}_0(F(Q)) \rightarrow \cdots
\end{array}
\]

Since every Čech 1-cycle on \(U \) bounds on \(X \), \(j_*(z) = 0 \); hence, \(g'j_*(z) = 0 \). But \(g'j_*(z) = (j|F(Q))_*g(z) = w \), since \((j|F(Q))_* \) is the identity, and \(w \neq 0 \). This contradiction implies the theorem is true.

A space \(X \) is said to be locally peripherally connected at \(x \in X \) provided that for every open set \(P \) containing \(x \) there exists an open set \(M \) containing \(x \) and contained in \(P \) such that \(F(M) \) is connected. A point \(x \in X \) is a local separating point if \(V - \{x\} \) is not connected for some open connected set \(V \) containing \(x \). The next theorem proves a relation between these concepts.

Theorem 2. If \(X \) is a locally connected continuum which is semi-1-connected at a nonlocal separating point \(x \in X \), then \(X \) is locally peripherally connected at \(x \).

Proof. Let \(U \) be an open set such that \(x \in U \) and every Čech 1-cycle on \(U \) bounds on \(X \). If \(X \) is not locally peripherally connected at \(x \), then there exists an open set \(M \) containing \(x \) and contained in \(U \) such that no open set contained in \(M \) and containing \(x \) has a connected boundary. \(M \) may be taken to have property S [2, p. 22, §15.43], to be connected, and to be such that \(M \subseteq U \). For each positive integer \(i \), let \(R_i \) be a region such that \(x \in R_i \), diam \((R_i) \leq (1/(i+1))\rho(x, F(M)) \), and \(R_i \supseteq \overline{R}_{i+1} \).

Let \(y \in M - R_i \). That every arc \(xy \) in \(U \) has its last point, in the order \(x \) to \(y \), in \(R_i \), in the same component \(H_i \) of \(F(R_i) \), for each \(i \), is implied by Theorem 1. Hence, for each \(i \), \(H_i \) separates \(x \) from \(y \) in \(U \) and, therefore, \(H_i \) separates \(x \) from \(y \) in \(M \). Let \(X_i \) be the component of \(M - H_i \) containing \(x \). Since \(H_{i+1} \subseteq R_i \subseteq X_i \), for each \(i \), it is true that \(X_{i+1} \subseteq X_i \) (see [2, p. 42]). The collection \(\{X_i\} \) then forms a decreasing sequence: \(X_1 \supseteq X_2 \supseteq X_3 \supseteq \cdots \).

Suppose that, for some \(i \), \(X_i \subseteq M \). Then, since \(X_i \) is open and since \(F(X_i) = H_i \), which is connected, the selection of \(M \) is contradicted.
Hence, for each i, $X_i \cdot F(M) \neq 0$. Select now a sequence of points $\{x_i\}$ such that $x_i \in X_i$, as follows: (1) Choose x_1 from $X_1 \cdot F(M)$. (2) If $x_1 \in X_2$, then let $x_2 = x_1$; otherwise, let x_2 be any point in $X_2 \cdot F(M)$. (3) Suppose x_i has been chosen, choose $x_{i+1} = x_i$, if $x_i \in X_{i+1}$, or choose $x_{i+1} \in X_{i+1} \cdot F(M)$, if $x_i \notin X_{i+1}$. Suppose that the sequence resulting is infinite. Let \bar{x} be a limit point of $\{x_i\}$, and let $\{x_i\}$ be a subsequence such that if $p < q$, then $i_p < i_q$ and $x_{i_p} \neq x_{i_q}$ and such that $x_{i_n} \to \bar{x}$ as $n \to \infty$. Since $F(M)$ is compact, $\bar{x} \in F(M)$, and, since M is locally connected [2, p. 20, §15.3], there exists a connected set N, open in M, containing \bar{x} and not intersecting R_1. Let x_{i_p} and x_{i_q}, where $p < q$, be two points of $\{x_{i_n}\} \cdot N$. $N \subseteq M - H_{i_q}$ and $x_{i_q} \in N$; therefore, $N \subseteq X_{i_q} \subseteq X_{i_{q-1}} \subseteq \cdots \subseteq X_{i_{p+1}} \subseteq X_{i_p}$. Since $x_{i_p} \in N \subseteq X_{i_{p+1}}$, it is true that $x_{i_{p+1}} = x_{i_p}$, and since $x_{i_{p+1}} \in N \subseteq X_{i_{p+2}}$, $x_{i_{p+2}} = x_{i_{p+1}}$, etc. Thus, $x_{i_n} = x_{i_p}$, which is a contradiction.

Therefore all but a finite number of elements of the sequence $\{x_i\}$ are equal. Let I be a positive integer such that $i \geq I$ and $j \geq I$ imply $x_i = x_j$. Call this point \bar{x}. Since x is not a local separating point, $M - \{x\}$ is connected. Let, then, $\bar{x}y$ be an arc joining \bar{x} to y in $M - \{x\}$. There exists a positive integer J such that $i \geq J$ implies $\bar{x}_i \cdot F(R_{i_0})$, in the order \bar{x} to x (then $z_1 \in H_{i_0}$, obviously) and let z_2 be the last point of $xy \cdot F(R_{i_0})$, in the order x to y. Then $z_2 \in H_{i_0}$. The continuum $z_1 \bar{x} + \bar{x}y + yz_2 \subseteq M - R_{i_0} \subseteq U - R_{i_0}$ and intersects two different components of $F(R_{i_0})$, which contradicts the preceding theorem.

Therefore, X is locally peripherally connected at x.

Theorem 3. If X is a locally connected continuum which is semi-1-connected at a nonlocal separating point $x \in X$, then there exist arbitrarily small open sets V containing x such that, if Q is any region contained in V, then there exists a component C of $F(Q)$ such that the component of $X - C$ containing Q is contained in V.

Proof. Let U be an open set containing x and such that every Čech 1-cycle on U bounds on X. We may take U to be connected. By Theorem 2, there exist arbitrarily small open sets containing x and having connected boundaries. Let V be any one of these such that $V \subseteq U$. Suppose Q is any open connected set contained in V. Let pv be any arc in U joining $p \in Q$ to $v \in F(V)$. Let C be the component of $F(Q)$ such that the last point z of $F(Q) \cdot pv$, in the order p to v, lies in C. Theorem 1 implies that every arc joining p to v has its last point in $F(Q)$, in the order p to v, in C. Since Q is arcwise connected and $F(V)$ is connected, the same statement may be made for
any arc in U joining a point of Q to a point of $F(V)$.

Let Z be the component of $X - C$ containing Q. If Z is not contained in V, then $Z \cdot F(V) \neq 0$ and, Z being arcwise connected, there exists an arc pv in Z, connecting a point $p \in Q$ to $v \in Z \cdot F(V)$. Therefore, $pv \cdot C = 0$. Let v' be the first point, in the order p to v, of $pv \cdot F(V)$. Then $pv' \subset V \cup U$ and $pv' \cdot C \neq 0$. This contradiction implies $Z \subset V$.

Theorem 4. If T is a compact totally disconnected set in a locally connected continuum X such that no point of T is a local separating point of X and X is semi-1-connected at each $x \in T$, and if ϵ is a positive number, then there exists a finite open covering $\{Y_1, Y_2, \ldots, Y_n\}$ of T such that (1) $\text{diam} (Y_i) < \epsilon$, for each i, (2) $F(Y_i)$ is connected, for each i, and (3) $Y_i \cdot Y_j = 0$, if $i \neq j$.

Proof. Let $\{U_x \mid x \in T\}$ be an open covering of T such that for each $x \in T$, every Čech 1-cycle on U_x bounds on X. By Theorem 2, there exists, for each $x \in T$, an open set V_x such that (1) $V_x \subset U_x$, (2) $F(V_x)$ is connected, and (3) $\text{diam} (V_x) < \epsilon$. Let $\{V_1, V_2, \ldots, V_n\}$ be a finite subcover of the covering $\{V_x \mid x \in T\}$. Since T is compact, there exists a positive number d such that every subset Q of X with $\text{diam} (Q) < d$ and $Q \cdot T \neq 0$ is contained in V_j, for some $j \in \{1, \ldots, n\}$. Cover T with connected open sets W_1, W_2, \ldots such that $\text{diam} (W_i) < d$, for each i, and $W_i \cdot W_j = 0$, if $i \neq j$. Then, given any W_i, there exists a $j \in \{1, \ldots, n\}$ such that $W_i \subset V_j$. Let $\{W_1, \ldots, W_p\}$ be a finite subcover (renumbered). Further, let x_1, \ldots, x_n be points of T such that $U_{x_i} \supset V_i$, for each $i \in \{1, \ldots, n\}$, and, for each $i \in \{1, \ldots, p\}$, let k_i be the smallest integer in $\{1, \ldots, n\}$ such that $V_i \supset W_i$. Choose the component C_i of $F(W_i)$ as in the proof of Theorem 3 using a point $v_{k_i} \in F(V_{k_i})$ so that the component Z_i of $X - C_i$ containing W_i is contained in V_{k_i}. (Actually, $Z_i \subset V_{k_i}$, here.) There exist at most p Z_i's.

(i) If $i \neq j$, then either $Z_i \cdot Z_j = 0$, or $Z_i \supset Z_j$, or $Z_j \supset Z_i$.

Proof. Suppose $Z_i \cdot Z_j \neq 0$. If $Z_i \cdot C_j = 0$, then $Z_i \subset Z_j$, and if $Z_j \cdot C_i = 0$, $Z_j \subset Z_i$. If neither is true, then both $Z_i \cdot C_j$ and $Z_j \cdot C_i$ are not empty. Since $W_i \subset X - C_j$ and has a boundary point in Z_j, which is open, $Z_j \cdot W_i \neq 0$ and $W_i \subset Z_j$. Similarly, $W_j \subset Z_i$. Let $p \in W_i$ and $q \in W_j$. Let pq be an arc in Z_i and let y be the last point of $(pq) \cdot F(W_i)$, in the order p to q. Then $y \in Z_i$, hence $y \in C_i$. Let C'_i be the component of $F(W_i)$ containing y. Let pv_{k_i} be an arc in $U_{x_{k_i}}$ and let x be the last point of $(pv_{k_i}) \cdot F(W_i)$, in the order p to v_{k_i}. Then $x \in C_i$.

Let qv_{k_i} be an arc in $U_{x_{k_i}}$ and let the last point of qv_{k_i} in $F(W_i)$, in the order q to v_{k_i}, be z. If $(v_{k_i}, z) \cdot W_i = 0$, then $K = xv_{k_i} + v_{k_i}z + W_j + qy$ is a continuum in $U_{x_{k_i}}$ containing points in two different components.
C_i and C_i' of $F(W_i)$, contradicting Theorem 1. If $(v_k,z) \cdot W_i \neq 0$, let w be the last point of (v_k,z) in $F(W_i)$, in the order v_k to z. If $w \in C_i'$, then $wz + \overline{W}_j + qy$ provides the same contradiction as above.

If $w \in C_i'$, then consider two cases:

Case 1, $k_i = k_j$. In this case observe that $z \in C_i$ and, since both p and q belong to Z_j, there exists an arc $(pq)'$ in Z_j. Let t be the last point of $(pq)'$ in $F(W_j)$, in the order q to p. Let C_i' be the component of $F(W_j)$ containing t. Since $t \in Z_j$ and $Z_j \cap C_j = \emptyset$, $C_i' \neq C_j$. Then $zw \cup U_{x_{ki}} - W_j$, $tp \subset U_{x_{ki}} - W_j$, and $\overline{W}_i \cup U_{x_{ki}} - W_j$. Therefore, $zw + \overline{W}_j + tp$ is a continuum in $U_{x_{ki}} - W_j$ containing points in two components C_j and C_j' of $F(W_j)$, contradicting Theorem 1.

Case 2, $k_i \neq k_j$ (suppose $k_i < k_j$). In this case, we have $W_j \subset V_{k_i}$ but $\overline{W}_j \not\subset V_{k_i}$. For, if it were, then in the selection of C_j the point v_{ki} would have been used; that is, then $k_i = k_j$. Hence $\overline{W}_j \cdot F(V_{k_i}) \neq 0$. Let $x_{x_{ki}}$ and pq be as above. Then $x_{x_{ki}} \subset U_{x_{ki}} - W_i$, $F(V_{k_i}) \subset U_{x_{ki}} - W_i$, and $\overline{W}_j \cup U_{x_{ki}} - W_i$. The continuum $x_{x_{ki}} + F(V_{k_i}) + \overline{W}_j + qy$ is contained in $U_{x_{ki}} - W_i$ and intersects two different components, C_i and C_i', of $F(W_j)$, contradicting Theorem 1.

Therefore, if $i \neq j$, then either $Z_i \cap Z_j = \emptyset$, or $Z_i \subset Z_j$, or $Z_j \subset Z_i$.

Now let Y_1 be the sum of all Z_i such that $Z_i \cdot Z_j = 0$. Let k_2 be the smallest integer such that $Z_{k_2} \cdot Y_1 = 0$. Let Y_2 be the sum of all Z_i such that $Z_i \cdot Z_{k_2} = 0$. Continuing in this way, if Y_i has been defined, let k_{i+1} be the smallest integer such that $Z_{k_{i+1}} \cdot (Y_1 + Y_2 + \cdots + Y_i) = 0$, and let Y_{i+1} be the sum of all Z_i such that $Z_i \cdot Z_{k_{i+1}} = 0$. Let $\{Y_1, Y_2, \ldots, Y_i\}$ be the collection thus obtained. Each Y_i, $i \in \{1, \cdots, l\}$, is a connected open set.

(ii) If $i \neq j$, then $Y_i \cap Y_j = \emptyset$.

Proof. Suppose $i < j$. If $Y_i \cdot Y_j = 0$, let $p \in Y_i \cdot Y_j$. Then there exists a Z_k such that $p \in Z_k$ and $Z_k \cdot Z_{k_i} = 0$, and a Z_m such that $p \in Z_m$ and $Z_m \cdot Z_{k_i} = 0$. Therefore $Z_k \cdot Z_m = 0$ and either (1) $Z_k \subset Z_m$ or (2) $Z_m \subset Z_k$. In case (1), $Z_m \cdot Z_{k_i} = 0$, so $Z_m \subset Y_i \cup \sum_{a=1}^{a=j-1} Y_a$. But then $Z_{k_i} \cdot \sum_{a=1}^{a=j-1} Y_a = 0$, which is a contradiction. In case (2), $Z_m \subset Y_i$ also, since $Z_m \subset Z_k$ and $Z_k \subset Y_i$, giving the same contradiction.

(iii) For each i, there exists a k such that $Y_i = Z_k$ and a j such that $Y_i \subset V_j$.

Proof. Observe that there is a k such that $Z_k = Y_i$, for each i, for if $Z_{k_i} \neq Y_i$, then there is a point $p \in Y_i - Z_{k_i}$, and there is a j_1 such that $Z_{j_1} \cdot Z_{k_i} = 0$ and $p \in Z_{j_1}$. Therefore $Z_{j_1} \supset Z_{k_i}$ properly. If $Z_{j_i} \neq Y_i$, then there is a j_2 such that $Z_{j_2} \supset Z_{j_i}$ properly. But this process must stop since there are only a finite number of the Z_i's. Hence, there is a k such that $Z_k = Y_i$, for each i. That there is a j such that $Y_i \subset V_j$ is obvious.
The collection \(\{ Y_1, \ldots , Y_l \} \) satisfies the conclusion of the theorem, since

1. For each \(i \), there exists a \(j \) such that \(Y_i \subseteq V_j \), so that \(\text{diam} \ (Y_i) \leq \text{diam} \ (V_j) < \varepsilon \).

2. For each \(i \), there exists a \(k \) such that \(Y_i = Z_k \), so that \(F(Y_i) = F(Z_k) = C_k \) is connected.

3. \(Y_i \cdot Y_j = 0 \), if \(i \neq j \).

Bibliography

University of Virginia and Florida State University