Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the representations of nilpotent Lie algebras


Author: Charles W. Curtis
Journal: Proc. Amer. Math. Soc. 5 (1954), 813-824
MSC: Primary 09.1X
DOI: https://doi.org/10.1090/S0002-9939-1954-0064029-X
Erratum: Proc. Amer. Math. Soc. 5 (1954), 1001-1001.
MathSciNet review: 0064029
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. vol. 38 (1937) pp. 326-332.
  • [2] C. Chevalley, Théorie des groupes de Lie, vol. II, Paris, 1951.
  • [3] -, Théorie des groupes de Lie, vol. III, to appear.
  • [4] C. W. Curtis, Noncommutative extensions of Hilbert rings, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 945-955. MR 0059254 (15:498g)
  • [5] -, On the structure of non-semisimple algebras, Duke Math. J. vol. 21 (1954) pp. 79-86. MR 0061095 (15:774a)
  • [6] N. Jacobson, Restricted Lie algebras of characteristic $ p$, Trans. Amer. Math. Soc. vol. 50 (1941) pp. 15-25. MR 0005118 (3:103g)
  • [7] -, Un généralisation du Théorème d'Engel, C. R. Acad. Sci. Paris vol. 234 (1952) pp. 679-681.
  • [8] E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. vol. 176 (1937) pp. 126-140.
  • [9] H. Zassenhaus, Über Liesche Ringe mit Primzahlcharacteristik, Abh. Math. Sem. Hansischen Univ. vol. 13 (1940) pp. 1-100.
  • [10] -, Darstellungstheorie nilpotenter Lie-ringe bei Characteristik $ p > 0$, J. Reine Angew. Math. vol. 182 (1940) pp. 150-155. MR 0002849 (2:121c)
  • [11] -, Über die Darstellungen der Lie-algebren bei Characteristik 0, Comment. Math. Helv. vol. 26 (1952) pp. 252-274. MR 0051831 (14:531e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 09.1X

Retrieve articles in all journals with MSC: 09.1X


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1954-0064029-X
Article copyright: © Copyright 1954 American Mathematical Society

American Mathematical Society