In discussing unique factorization and ideal theory, C. C. Mac-Duffee [1, p. 122] cites the multiplicative system of positive integers of the form $1+7k$ as an example where unique factorization fails, since $792 = 2^2 \cdot 3^6 = 8 \cdot 99$, and 8, 22, 36, 99 are all primes in the system. H. Davenport [2, p. 21] uses positive integers of the form $1+4k$ for the same purpose, with the numerical case $693 = 9 \cdot 77 = 21 \cdot 33$. In this paper we examine all multiplicative systems made up of arithmetic progressions, and decide the question of unique factorization.

For a fixed positive integer n, let M be a multiplicatively closed system of positive integers such that if $x \in M$ and $y \equiv x \pmod{n}$, $y > 0$, then $y \in M$. It will be assumed that n is the smallest positive integer which can be used to define M. For example the set M of all positive integers congruent to 1, 3, or 5 modulo 6 is also the set congruent to 1 modulo 2, and in this case $n = 2$. We divide the integers 1, 2, \cdots, n into two classes: the set A, $\phi(n)$ in number, of those relatively prime to n, and the others in set B, $n - \phi(n)$ in number.

Theorem. M has unique factorization if and only if $M \cap A = A$, $M \cap B = 0$, i.e. if and only if M consists of all positive integers relatively prime to n.

The proof will be in several parts, and will employ the following additional notation. Write $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ where the p_i are primes of I, the set of all positive integers. Numbers m belonging to M which cannot be factored in M are called pseudo-primes.

Case 1. $M \cap A = A$, $M \cap B = 0$. Thus $m \in M$ if and only if $(m, n) = 1$ and so the pseudo-primes of M are the primes of I with p_1, p_2, \cdots, p_r deleted. Unique factorization in M is implied by that in I.

Case 2. $M \cap B \neq 0$, $M \cap A = 0$. To any $m \in M$ there corresponds $b \in (M \cap B)$ such that $m \equiv b \pmod{n}$, whence $(m, n) = (b, n)$. For any b_i in $M \cap B$, define $d_i = (b_i, n)$, so that $d_i > 1$. Among the elements of $M \cap B$, choose b_1 so that its corresponding d_1 is a minimum. Thus $(b_1, n) = d_1$ with say $b_1 = d_1 q_1$ and $n = d_1 q_2$, $(q_1, q_2) = 1$. Choose distinct primes $\pi_1 > n$ and $\pi_2 > n$ of the form $q_1 + xq_2$, and also the prime π_3 of the form $1 + xn$. Since $\pi_1 > n$ we have $(\pi_1, n) = 1$ and $\pi_1 \notin M$. Similarly π_2, π_3, $\pi_1 \pi_3$, and $\pi_2 \pi_3$ are not in M.

Next we establish that $d_1 \pi_1 \pi_3$, which is of the form $b_1 + xn$, is a
pseudo-prime in M. For any nontrivial factorization in M would be either of the form $(\delta_1)(\delta_2 \pi_1 \pi_2)$ or $(\delta_1 \pi_1)(\delta_2 \pi_3)$ where $\delta_1 \delta_2 = d_1$ with $1 < \delta_1 < d_1$. But these are not valid factorizations in M, inasmuch as δ_1 and $\delta_2 \pi_1$ are not in M, since $(\delta_1, n) = (\delta_1 \pi_1, n) = \delta_1 < d_1$ would contradict the minimum principle used in the selection of d_1. Similarly $d_1 \pi_2 \pi_3$ is a pseudo-prime in M.

Also $d_1 \pi_1$ and $d_1 \pi_2$ are pseudo-primes in M. For any nontrivial factorization of $d_1 \pi_1$ in M would have the form $(\delta_1)(\delta_2 \pi_1)$ with $1 < \delta_1 < d_1$, but as before δ_1 is not in M.

The proof of Case 2 is completed by observing that

$$(d_1 \pi_1)(d_1 \pi_2 \pi_3) = (d_1 \pi_2)(d_1 \pi_2 \pi_3),$$

each term in parentheses being a pseudo-prime, and the factorizations being different since $\pi_1 \neq \pi_2$.

Case 3. $A \neq A \cap M \neq 0$. Let $a \in M$, so that $a^\phi(n) \in M$, and $a^\phi(n) \equiv 1 \pmod{n}$, so that $1 \in M$. Let α be a member of A which is not in M. Since $\alpha^\phi(n) \in M$, there is a least exponent $e > 1$ such that $\alpha^e \in M$. Choose distinct primes $\pi_1 > n$ and $\pi_2 > n$ of the form $\alpha + xn$, and it follows that π_1^e and π_2^e are pseudo-primes in M. Also $\pi_1 \pi_2^{-1}$ and $\pi_2 \pi_1^{-1}$ are pseudo-primes in M, so the proof is complete by the factorization

$$(\pi_1^e)(\pi_2^e) = (\pi_1 \pi_2^{-1})(\pi_2 \pi_1^{-1}).$$

Case 4. $M \cap A = A$, $B \neq M \cap B \neq 0$. As in Case 1, the pseudo-primes of M include all primes p such that $(p, n) = 1$. But since $M \cap B \neq 0$, there are other pseudo-primes of M, and we now prove that these others have no prime factors apart from the prime factors of n.

If q is any pseudo-prime with $(q, n) > 1$, write $q = q_1 q_2$ where the prime factors of q_1 are also prime factors of n, but $(q_2, n) = 1$. We can readily prove that $q_2 = 1$. For the congruence $\mu q_2 \equiv 1 \pmod{n}$ has a positive solution μ, and all of μ, q_2, q, μq are in M. Thus $\mu q \equiv q_1 \pmod{n}$, so q_1 is in M. Thus $q = q_1 q_2$ is a factorization in M, and $(q, n) > 1$ implies $(q_1, n) > 1$ and $q_1 \neq 1$, so $q_2 = 1$ since q is a pseudo-prime.

Thus we have established that the pseudo-primes of M are of two types: (1) all primes p with $(p, n) = 1$; (2) at least one pseudo-prime q whose prime factors are contained in the set p_1, p_2, \ldots, p_r, the prime factors of n. Let us order these primes so that precisely p_1, \ldots, p_h are the prime factors of these pseudo-primes, with $1 \leq h \leq r$.

Lemma 1. M lacks unique factorization if it contains more than h pseudo-primes of type (2) above.

Proof. If we have $h+1$ distinct pseudo-primes
\[q_i = p_1^{a_{i1}} p_2^{a_{i2}} \cdots p_h^{a_{ih}}, \quad j = 1, 2, \ldots, h + 1, \]

we can solve the \(h \) equations

\[\sum_{i=1}^{h+1} x_i \alpha_{ij} = 0, \quad i = 1, 2, \ldots, h, \]

for integral values \(x_j \) not all zero. Thus we would have

\[\prod_{j=1}^{h+1} q_j^{x_j} = 1 \]

and multiplying both sides by \(q_j^{-x_j} \) in all cases of negative \(x_j \), we obtain a counter-example to unique factorization.

Lemma 2. Let \(p \) be any one of the primes \(p_1, \ldots, p_h \). If no pseudo-prime of \(M \) is of the form \(p^i \), then \(M \) has infinitely many pseudo-primes of type (2).

Proof. There is no loss of generality in taking \(p = p_1 \). Now \(M \) contains a pseudo-prime with \(p_1 \) as a factor, say

\[q = p_1^{\beta_1} p_2^{\beta_2} \cdots p_h^{\beta_h} \]

where \(\beta_1 > 0 \) and \(\beta_2 + \beta_3 + \cdots + \beta_h > 0 \) by the hypothesis of the lemma. For \(j = 1, 2, 3, \ldots \), choose positive \(x_j \) to satisfy \(x_j \equiv 1 (\text{mod } \alpha_j) \) and \(x_j = 1 (\text{mod } p_j) \). Choose a positive integer \(\gamma \) so that \(\gamma \beta_1 \geq \alpha_1 \), so that \(q^\gamma (x_j - p_1^i) \) is divisible by \(n \), that is,

\[x_j q^\gamma \equiv p_1^i q^\gamma \equiv p_1^{i+\gamma \beta_1} p_2^{\gamma \beta_2} \cdots p_h^{\gamma \beta_h} (\text{mod } n). \]

Also \((x_j, n) = 1 \) so that \(x_j \) and \(x_j q^\gamma \) are in \(M \). If \(M \) contained only a finite number of pseudo-primes of type (2), then

\[p_1^{i+\gamma \beta_1} p_2^{\gamma \beta_2} \cdots p_h^{\gamma \beta_h} \]

could not be factored into pseudo-primes for \(j \) very large, the exponents \(\gamma \beta_2, \ldots, \gamma \beta_h \) being fixed. This completes the proof of Lemma 2, and in view of Lemma 1, we can now complete Case 4 by proving the following result.

Lemma 3. If \(M \) contains only a finite number of pseudo-primes of type (2), the number exceeds \(h \).

Proof. By Lemma 2, \(M \) contains \(h \) pseudo-primes of the form \(p_1^{\gamma_1}, p_2^{\gamma_2}, \ldots, p_h^{\gamma_h} \). We assume that these are all the pseudo-primes of type (2) in \(M \), and obtain a contradiction.
First we establish that \(\gamma_1 = \gamma_2 = \cdots = \gamma_h = 1 \). Choose the positive integer \(\mu \) so that \(\mu \gamma_1 \geq \alpha_1 \), and the positive integer \(x \) to satisfy simultaneously \(x \equiv p_1 \pmod{n/p_1^{\gamma_1}} \) and \(x \equiv 1 \pmod{p_1} \). Thus \(n \) is a divisor of \(p_1^{\mu \gamma_1}(x - p_1) \), that is

\[
x p_1^{\mu \gamma_1} \equiv p_1^{1+\mu \gamma_1} \pmod{n}.
\]

Now \((x, n) = 1 \), so that \(x \) is in \(M \), and so is \(p_1^{\gamma_1} \), whence \(xp_1^{\mu \gamma_1} \) is in \(M \). Thus \(p_1^{1+\mu \gamma_1} \) is in \(M \). But by the opening remark of this proof the only powers of \(p_1 \) which are in \(M \) are also powers of \(p_1^{\gamma_1} \). Hence \(\gamma_1 = 1 \). Similarly \(\gamma_2 = \gamma_3 = \cdots = \gamma_h = 1 \).

We have established that the pseudo-primes of type (2) in \(M \) are \(p_1, p_2, \cdots, p_h \). Thus the set \(M \) can be characterized as all positive integers relatively prime to \(p_{h+1}, \cdots, p_r \), if such primes exist. So the set \(M \) can be described in terms of the modulus \(p_{h+1}p_{h+2} \cdots p_r \), which is less than \(n \) since \(h \geq 1 \). This contradicts our basic hypothesis that \(n \) is the smallest modulus available to define \(M \). This completes the proof of Lemma 3 and Case 4.

Remark on the proofs. The Dirichlet theorem on the infinitude of primes in an arithmetic progression is used in Cases 2 and 3, but is not essential in these proofs, as we now show.

In Case 2 it is not necessary that \(\pi_1, \pi_2, \pi_3 \) be primes, but merely that they have the following properties:

\[
\pi_3 \equiv 1 \pmod{n}, \quad (\pi_1, n) = (\pi_2, n) = 1,
\]

\[
d_1 \pi_1 = d_2 \pi_2 = b_1 \pmod{n}, \quad \pi_1 \neq \pi_2.
\]

It can be verified that these are all satisfied by the choices \(\pi_3 = 1 + n \), \(\pi_1 = q_1 + uq_2 \) where \(u \) is defined as the product of all primes dividing \(n \) but not dividing \(q_1 \), and \(\pi_2 = q_1 + u\pi q_2 \) where \(\pi \) is any prime exceeding \(n \).

To remove the Dirichlet theorem from the proof of Case 3 we proceed as follows. Let \(p \) be the smallest integer in \(A \) which is not in \(M \). Our notation is justified since \(p \) is a prime in \(I \), for if \(p = qv \) it would follow that \(q \) and \(v \) were in \(A \) but not both in \(M \), contradicting the minimal property of \(p \). Define \(e \) as the least exponent such that \(p^e \in M \), and so \(1 < e \leq \phi(n) \). Define \(b = n + p^{e-1} \), whence \(b^e \equiv (p^e)^{e-1} \pmod{n} \) so that \(b \in M \) but \(b^e \notin M \) and \(pb \in M \).

Now consider the factorization in \(M \), not all factors being necessarily pseudo-primes,

\[
(p^e)(b^e) = (pb)(pb) \cdots (pb).
\]

However, \(p^e \) is a pseudo-prime, and \(p^e \) is not a divisor of \(pb \), since \((p, n) = 1 \) implies \((p, b) = 1 \).
ON A PROBLEM OF ADDITIVE NUMBER THEORY

G. G. LORENTZ

Let \(A, B, \ldots \) denote sets of natural numbers. The counting function \(A(n) \) of \(A \) is the number of elements \(a \in A \) which satisfy the inequality \(a \leq n \). We shall call two sets \(A, B \) complementary to each other if \(A + B \) contains all sufficiently large natural numbers.

In a talk with the author P. Erdős conjectured that each infinite set \(A \) has a complementary set \(B \) of asymptotic density zero. Here we wish to establish a theorem which gives an upper estimate for \(B(n) \) in terms of \(A(n) \). As a particular case, the truth of Erdős' conjecture will follow. The estimate (1) below should be compared with the (trivial) lower estimate \(B(n) \geq (1 - e)n/A(n) \), which holds for all large \(n \).

Theorem 1. For each infinite set \(A \) there is a complementary set \(B \) such that

\[
B(n) \leq C \sum_{k=1}^{n} \frac{\log A(k)}{A(k)} ;
\]

\(C \) is an absolute constant and the terms of the sum with \(A(k) = 0 \) are to be replaced by one.

Proof. Let \(A \) be given and let \(m < n \) denote two natural numbers. We shall choose certain integers \(b \) in the interval \(m \leq b < 2n \) in such a way that the sums \(a + b, a \in A \), fill the whole interval \(n < a + b \leq 2n \). Our concern will be to obtain the upper estimate (4) for the number \(K \) of the \(b \)'s.

First we take a \(b_1 \) in \([m, 2n)\) in such a way that the portion of \(A + b_1 \) contained in \((n, 2n] \) has the maximal possible number \(S \) of elements and choose this \(b_1 \) as one of our \(b \)'s. Then we take another

Received by the editors March 2, 1954.