ON INTERVALS CONTAINING AN AFFINELY EQUIVALENT
SET OF n INTEGERS MOD k

L. J. MORDELL

1. Let \(n > 2 \) be a given positive integer and \((x) = (x_1, x_2, \ldots, x_n)\)
a given set of \(n \) integers. Let \(k \) be a given positive integer. Then
L. Redei [1], improving an old result of Thue [2], has recently proved the

Theorem. If \(k \) is a prime, there exist integers \(a, b, (a, k) = 1 \), such
that a set of integers \((y)\), defined by

\[
y_r = ax_r + b \pmod{k} \quad (r = 1, 2, \ldots, n),
\]

lies in an interval of width \(L \) where

\[
nL^{n-1} \leq 2^{n-1}k^{n-2},
\]
i.e.

\[
|y_r - y_s| \leq L \quad (r, s = 1, 2, \ldots, n).
\]

The estimate is trivial if it can give a value of \(L \geq k \), i.e. if \(nk^{n-1} \leq 2^{n-1}k^{n-2} \) or \(k \leq 2^{n-1}/n \). There is also a trivial result \(L = 0 \) if we had
allowed \(a \equiv 0 \pmod{k} \).

I notice that Redei's proof can be presented in a rather simpler form and also extended to the case where \(k \) is not a prime. We have now

Theorem I. Let \(\delta \) be the greatest divisor of \(k \) such that

\[
x_1 \equiv x_2 \equiv \cdots \equiv x_n \pmod{\delta},
\]

and so \(\delta = (x_1 - x_n, x_2 - x_n, \ldots, x_{n-1} - x_n, k) \). Then integers \(a \neq 0 \pmod{k} \), \(b \) exist such that an integer set \((y)\), defined by

\[
y_r = ax_r + b \pmod{k} \quad (r = 1, 2, \ldots, n),
\]
lies in an interval of width \(L = L(\delta, k) \), where

\[
nL^{n-1} \leq 2^{n-1}\delta k^{n-2}.
\]

There is no loss of generality in theorems of this kind, if we suppose hereafter that \(\delta = 1 \). For clearly

\[
L(\delta, k) = \delta L(1, k/\delta),
\]
since \(y_r - y_s \equiv a(x_r - x_s) \pmod{k} \), and so we can put \(y_r = \delta y'_r + c \) where

Presented to the Society, September 5, 1953; received by the editors April 5, 1953.

854
\(y_r' \) is an integer and \(c \) is a constant.

Results of this kind can also be found by an application of Dirichlet’s classical distribution result and this leads to

Theorem II. Let \(\lambda \) be the least positive integer which satisfies the inequality

\[
(\lambda + 1)^n - \lambda^n \geq k^{n-2}.
\]

Then we can take \(L = 2\lambda \) or \(L = 2\lambda + 1 \) according as the inequality or equality sign holds. Under certain conditions, as stated in Theorem III, the result \(L = 2\lambda + 1 \) is best possible.\(^1\)

Further the result \(L = 2\lambda \) can be replaced by \(L = 2\lambda - 1 \) if now \(\lambda \) is the least positive integer which satisfies the inequality

\[
(\lambda + 1)^n - (\lambda - 1)^n \geq 2k^{n-2}.
\]

Write \((k^{n-2}/n)^{(1/(n-1)} = I + f\), where \(I \) is an integer and \(0 \leq f < 1 \). When \(0 \leq f < 1/2 \), the result of Theorem I is included in the first part above. For on putting \(\lambda + 1/2 = \mu \), the first inequality is satisfied by \(\lambda + 1/2 \geq I + f \), i.e. \(\lambda = I \) and so \(L = 2I \). Theorem I gives \(L = [2I + 2f] = 2I \).

When \(1/2 \leq f < 1 \), the result of Theorem I is given in the second part above. For the second equality is satisfied by \(\lambda \geq I + f \), i.e. \(\lambda = I + 1 \) and so \(L = 2I + 1 \). Theorem I, however, gives \(L = [2I + 2f] = 2I + 1 \).

2. For Theorem I, put

\[
y_r = ax_r + b + k\xi_r \quad (r = 1, 2, \ldots, n),
\]

where \(\xi_r \) is an integer. Then we have to satisfy

\[
| a(x_r - x_s) + k(\xi_r - \xi_s) | \leq L \quad (r, s = 1, 2, \ldots, n).
\]

Write

\[
\xi_r = \eta_r + \xi_n, \quad x_r = x_r' + x_n,
\]

where now, and in the remainder of this chapter, \(r \) and \(s \) take the values \(1, 2, \ldots, n-1 \). Then

\[
| ax_r' + k\eta_r | \leq L, \quad | a(x_r' - x_s') + k(\eta_r - \eta_s) | \leq L.
\]

Define an \((n-1)\)-dimensional region \(R \) by

\(^1\) Redei [1, p. 81] states that this is easily proved when \(k \) is a prime and \(n = 3 \). The referee notes that this is obvious even when \(k \) is not a prime on taking \(x_1 = 1, x_2 = 3\lambda + 2, x_3 = 0 \). I should like to thank him for this remark and also for some other valuable comments.
Then R contains a point (x) with coordinates
\[x_r = ax'_r + k\eta_r \quad (r = 1, 2, \ldots, n - 1), \]
where a and the η are integers. We define a $(2n - 1)$-dimensional region S by combining R and
\[|X_r - ax'_r - k\eta_r| < 1, \quad |a| < k, \]
where the η and a are the additional n variables.

We use Minkowski's convex region theorem to find L such that S contains an integer set $[(X), a, (\eta)] \neq [(0), 0, (0)]$. Redei states that the content of R is obviously nL^{n-1}, but a proof is contained in the lemma following. Then clearly on integrating first for η and a, the content V of S is given by
\[V = nL^{n-1}(2/k)^{n-1}k, \]
and so $V \geq 2^{2n-1}$ if
\[nL^{n-1} \geq 2^{n-1}k^{n-2}. \]
This is really Redei's result; and on noting the equation defining R, it suffices to take
\[L = (2^{n-1}k^{n-2}/n)^{1/(n-1)}, \]
where the square bracket denotes the integer part. Then S contains an integer set and for this, obviously,
\[X_r - ax'_r - k\eta_r = 0, \]
i.e.
\[X_r \equiv ax'_r \pmod{k}. \]

It remains only to show that the trivial result $a = 0$ has been excluded. If $a = 0$, $X_r \equiv 0 \pmod{k}$. By Minkowski's theorem, all the X_r are not zero, since if they were, all the η_r would be zero. Hence the trivial solution is excluded if $L < k$, i.e. $k > 2^{n-1}/n$.

3. Theorem II follows from a simple application of a general principle. Let a bounded n-dimensional convex region $R(\lambda)$, symmetrical about the origin, be defined by $f(X) \leq \lambda$, where $f(X)$ is a distance function and so $f(X' - X'') \leq f(X') + f(X'')$, and λ is a positive parameter. We find an estimate for L such that the region $R(L)$ will contain an integer set $(X) \neq 0$, satisfying r given linear homogeneous congruences (\pmod{k}), say,
\[L_1(X) \equiv 0, L_2(X) \equiv 0, \ldots, L_r(X) \equiv 0. \]
Let \(N(\lambda) \) be the number of lattice points in \(R(\lambda) \). Then if \((X) \) runs through these \(N(\lambda) \) points, the \(L \)'s assume \(N(\lambda) \) sets of residues \((\text{mod } k)\). If \(N(\lambda) > k^r \), two different lattice points \((X'), (X'') \) give the same set of residues for the \(L \)'s. Hence \((X) = (X' - X'') \) satisfies the homogeneous congruences and clearly lies in the region \(R(2\lambda) \).

The \(R(2\lambda) \) may sometimes be improved to \(R(2\lambda - 1) \) as follows. The region \(R(\lambda - 1) \) contains \(N(\lambda - 1) \) lattice points. We adjoin to these, say, \(N_1(\lambda) \) lattice points lying in \(R(\lambda) \) and not in \(R(\lambda - 1) \), taken in such a way that \((X' - X'') \) does not lie on the boundary of \(R(2\lambda) \). Then if \(N(\lambda - 1) + N_1(\lambda) > k^r \), the point \((X' - X'') \) will lie in \(R(2\lambda - 1) \). In fact, we take \(N_1(\lambda) = 1 \) in the proof of Theorem II.

4. We require the

Lemma. Let \(R(\lambda) \), where \(\lambda \) is a positive integer, denote the region

\[
\left| x_r \right| \leq \lambda, \quad |x_r - x_s| \leq \lambda \quad (r, s = 1, 2, \cdots, n - 1).
\]

Then \(R(\lambda) \) contains exactly

\[
N(\lambda) = (\lambda + 1)^n - \lambda^n
\]

lattice points, i.e. points with integer coordinates.

My original proof was rather lengthy so I replace it by a very simple one found subsequently by Dr. Cassels and kindly put at my disposal. Write \(x_0 = 0 \) and define \(y_0, y_1, \cdots, y_{n-1} \) by \(y_0 = \max (x_r), y_r + x_r = y_0 \) \((r = 1, 2, \cdots, n - 1)\). If \(y_0 \) arises from an \(x_r \), then \(y_s = 0 \). Also \(0 \leq y_r \leq \lambda \). Then the \(y \)'s can take all integer values satisfying

\[
\max y_r \leq \lambda, \quad \min y_r = 0 \quad (r = 0, 1, 2, \cdots, n - 1).
\]

The first inequality gives \((\lambda + 1)^n\) possibilities for the \(y \)'s, and the second excludes \(y_r = 1, 2, \cdots, \lambda \), i.e. \(\lambda^n \) possibilities. Hence the result.

Corollary. It follows on inscribing \((n - 1)\)-dimensional cubes of sides \(1/\lambda\) in \(R \) that the content \(V \) of \(R(1) \) is given by

\[
V = \lim_{\lambda \to \infty} N(\lambda)/\lambda^{n-1} = n.
\]

5. We now find \(\lambda \) so that the region \(R(\lambda) \) contains an integer set \((X) \) congruent \text{mod } k to at least one of the sets \((ax')\), where \((x') \) is any given set of \(n - 1 \) integers with \((x'_1, x'_2, \cdots, x'_{n-1}, k) = 1\), and \(a \) takes the values \(1, 2, \cdots, k-1\), i.e.

\[
X_r \equiv ax'_r \pmod k \quad (r = 1, 2, \cdots, n - 1).
\]

Write \(Y_r = X_r - ax'_r \). When \((X) \) runs through the \(N(\lambda) \) lattice
points in \(R(\lambda) \) and \(a \) runs through the values 0, 1, \cdots, \(k-1 \), then the \((Y) \) runs through \(kN(\lambda) \) residue sets mod \(k \). Hence if \(kN(\lambda) > k^{n-1} \), there must be at least two different sets \((X', a') \), \((X'', a'') \) giving the same residue sets for \((Y) \). Then a solution of the congruences \((Y) \equiv 0 \) is given by \((X) = (X' - X'') \), \(a = a' - a'' \). This set \((X) \) will be in \(R(2\lambda) \). If this occurs with the trivial solution \(a = 0 \), then \((X) \equiv 0 \) (mod \(k \)), and so this will be excluded if \(k > 2\lambda \). Hence if \(\lambda \) is a positive integer such that

\[
(\lambda + 1)^n - \lambda^n > k^{n-2},
\]

\((X) \) will be in the region \(R(2\lambda) \).

If, however, there exists a positive integer \(\lambda \) such that

\[
(\lambda + 1)^n - \lambda^n = k^{n-2},
\]

we show that there will be a suitable point \((X) \) in \(R(2\lambda + 1) \). For, take a lattice point \((\bar{X}) \) lying in \(R(\lambda + 1) \) but not in \(R(\lambda) \). This one combined with those in \(R(\lambda) \) gives more than \(k^{n-2} \) sets of residues. But now the solution \((X) = (X' - X'') \) will lie in \(R(2\lambda + 1) \).

We prove now the

Theorem III. The result \(R(2\lambda + 1) \) is best possible if the values assumed by \((X) - a(x) \) form a complete set of residues mod \(k \) when \((X) \) runs through the lattice points of \(R(\lambda) \) and \(a \) takes the values 0, 1, 2, \cdots, \(k-1 \).

It suffices to prove that if \((X) \) is any lattice point in \(R(2\lambda) \), then

\[
(X) = (Z) + (Z'),
\]

where \((Z) \) and \((Z') \) are lattice points in \(R(\lambda) \). For then the condition in the theorem implies that the relation

\[
(Z) - a(x) \equiv -(Z')
\]

holds only when \(a = 0 \), \((Z) = -(Z') \). Then \((X) = 0 \), and so the only solution of \((X) \equiv a(x) \), where \((X) \) is in \(R(2\lambda) \), is the trivial one.

Let \(\alpha, \alpha', \cdots; \beta, \beta', \cdots; \gamma, \gamma', \cdots \) typify indices 1, 2, \cdots, \(n-1 \) for which

\[
X_\alpha = 2Y_\alpha \equiv 0 \pmod{2}, \quad X_\beta = 2Y_\beta - 1 \equiv 1 \pmod{2}, \quad X_\gamma = 2Y_\gamma + 1 \equiv 1 \pmod{2}, \quad X_0 = 0, \quad X_\gamma \leq 0, \quad X_\gamma \geq 0.
\]

When the same argument applies to both the \(\beta \) and \(\gamma \) sets, we use the letter \(\delta \) and put

\[
X_\delta = 2Y_\delta + \epsilon_3, \quad \epsilon_3 = \epsilon_3' = \cdots = \pm 1.
\]
We take \((Z), \,(Z')\) to be lattice points which we can write as
\[
(Z) = (Y_\alpha, \ldots, Y_\beta - 1, \ldots, Y_\gamma \ldots), \quad \text{and} \quad (Z') = (Y_\alpha, \ldots, Y_\beta, \ldots, Y_\gamma + 1, \ldots),
\]
where the notation indicates the various types of coordinates. These points will be in \(R(\lambda)\), i.e. \(|Z_r| \leq \lambda, |Z_r - Z_s| \leq \lambda\), etc., if the following five sets of conditions are satisfied.

(1) \[|Y_\alpha| \leq \lambda, \quad |Y_\delta| \leq \lambda - 1. \]

These hold, as follows from
\[
|2Y_\alpha| \leq 2\lambda, \quad 2Y_\delta + \epsilon_\delta \leq 2\lambda.
\]
For \(2|Y_\delta| + 1 \leq 2\lambda, \quad |Y_\delta| \leq \lambda - 1/2\), and since \(Y_\delta\) is an integer, \(|Y_\delta| \leq \lambda - 1\).

(2) \[|Y_\alpha - Y_\alpha'| \leq \lambda, \quad |Y_\delta - Y_\delta'| \leq \lambda. \]

This holds since
\[
|2Y_\alpha - 2Y_\alpha'| \leq 2\lambda, \quad |2Y_\delta + \epsilon_\delta - (2Y_\delta' + \epsilon_\delta')| \leq 2\lambda, \quad \epsilon_\delta = \epsilon_\delta'.
\]
Now \(|2Y_\alpha - 2Y_\beta + 1| \leq 2\lambda\) which gives
\[
|2Y_\alpha - 2Y_\beta + 2| \leq 2\lambda + 1, \quad |2Y_\alpha - 2Y_\beta| \leq 2\lambda + 1,
\]
\[
|Y_\alpha - Y_\beta + 1| \leq \lambda + 1/2, \quad |Y_\alpha - Y_\beta| \leq \lambda + 1/2, \quad \text{etc.}
\]

(3) \[|Y_\beta - 1 - Y_\gamma| \leq \lambda. \]

This results from
\[
|2Y_\beta - 1 - 2Y_\gamma - 1| \leq 2\lambda,
\]

(5) \[|Y_\alpha - Y_\gamma| \leq \lambda, \quad |Y_\alpha - Y_\gamma - 1| \leq \lambda. \]

This follows from
\[
|2Y_\alpha - 2Y_\gamma - 1| \leq 2\lambda,
\]
which gives
\[
|2Y_\alpha - 2Y_\gamma| \leq 2\lambda + 1, \quad |2Y_\alpha - 2Y_\gamma - 2| \leq 2\lambda + 1, \quad \text{etc.}
\]

This finishes the proof.

Bibliography

St. Johns College, Cambridge University