ALGEBRAS OF DIFFERENTIABLE FUNCTIONS

S. B. MYERS

1. Let M be a compact differentiable manifold of class C^r, $1 \leq r < \infty$, and let $C^r(M)$ be the space of all real functions of class C^r on M. In addition to the obvious algebraic structure of $C^r(M)$, we shall use a normed algebra structure, the norm being obtained by introducing a Riemannian metric on M. The main results (Theorems 1 and 3) will be stated and proved in this section, using lemmas on differentiable manifolds which will be proved in the following section. Theorem 1 is straightforward, Theorem 3 is more difficult.

Theorem 1. If M is a compact differentiable manifold of class C^r, then $C^r(M)$ as an algebra determines the C^r structure of M; i.e., if $C^r(M)$ is isomorphic to $C^r(N)$, where M and N are compact differentiable manifolds of class C^r, then there is a differentiable homeomorphism of class C^r of M onto N with an inverse of class C^r.

Proof. $C^r(M)$ and $C^r(N)$ are inverse-closed (as subspaces of the spaces of all continuous functions on M and N respectively). Also, by Lemma 1, they are separating. It follows that the space X of maximal ideals of $C^r(M)$ under the standard weak topology is homeomorphic to M, and the space Y of maximal ideals of $C^r(N)$ is homeomorphic to N. But there is a homeomorphism of X onto Y because of the assumed isomorphism $I(C^r(M)) = C^r(N)$, and hence a homeomorphism $H(M) = N$; furthermore, if $f \in C^r(M)$ and $F \in C^r(N)$, then $(I(f))(y) = f(H^{-1}(y))$ and $(I^{-1}(F))(x) = F(H(x))$. Therefore, by Lemma 2, H and H^{-1} are differentiable homeomorphisms of class C^r.

Theorem 2. Let M be a compact differentiable manifold of class C^r, provided with a Riemannian metric tensor g_{ij} of class C^{r-1}. For $f \in C^r(M)$ define

$$||f|| = \max_{x \in M} |f(x)| + \max_{x \in M} \left(g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \right)^{1/2}.$$

Then $C^r(M)$ becomes a real, commutative, semi-simple, normed algebra with unit; if $r = 1$, $C^r(M)$ is a Banach algebra.

Presented to the Society, May 1, 1954; received by the editors March 31, 1954.

1 This work was partially supported by the Office of Naval Research.

2 From the Gelfand theory. See, for example, Loomis, *An introduction to abstract harmonic analysis*, Van Nostrand, 1953, p. 55.

3 The summation convention of tensor analysis is used throughout.
PROOF. As is well known, at each point \(x \in M \),
\[
\left(g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \right)^{1/2} = \max \left| \frac{\partial f}{\partial x^i} \eta^i \right|,
\]
the max being taken over the unit contravariant vectors \(\eta \) at \(x \). It easily follows that \(\| f_1 + f_2 \| \leq \| f_1 \| + \| f_2 \| \). Also,
\[
\| f_1 f_2 \| = \max \left| f_1(x) \right| \left| f_2(x) \right| + \max_{x \in M, \eta \text{ at } x} \left| \left(f_1 \frac{\partial f_2}{\partial x^i} + f_2 \frac{\partial f_1}{\partial x^i} \right) \eta^i \right|
\]
\[
\leq \max \left| f_1(x) \right| \max \left| f_2(x) \right|
\]
\[
+ \max \left| f_1(x) \right| \max \left| \frac{\partial f_2}{\partial x^i} \eta^i \right| + \max \left| f_2(x) \right| \max \left| \frac{\partial f_1}{\partial x^i} \eta^i \right|
\]
\[
\leq \| f_1 \| \| f_2 \| .
\]

As for the completeness of \(C^r(M) \), let \(f^\alpha \) be a Cauchy sequence in \(C^r(M) \). Then \(f^\alpha(x) \) converges uniformly to a continuous function \(f(x) \), while \((\partial f^\alpha/\partial x^i)\eta^i \) as a sequence of continuous functions on the tangent bundle \(M \) of unit contravariant vectors of \(M \) converges uniformly over \(M \) to a function \(F(\eta) \) continuous on \(M \). If \(x^i = x^i(s) \) is a \(C^1 \) curve on \(M \), with unit tangent vector \(\eta^i(s) = dx^i/ds \), then
\[
\int_0^s \frac{\partial f^\alpha}{\partial x^i} \eta^i(s) ds = f^\alpha(x(s)) - f^\alpha(x(0))
\]
converges to \(\int_0^s F(\eta(s)) ds \). Hence
\[
f(x(s)) - f(x(0)) = \int_0^s F(\eta(s)) ds
\]
so that \(df(x(s))/ds = F(\eta(s)) \) for every curve in \(M \). Hence \(f(x) \) is of class \(C^1 \), \((\partial f/\partial x^i)\eta^i = F(\eta) \) for all \(\eta \in M \), and \((\partial f^\alpha/\partial x^i)\eta^i \) converges uniformly over \(M \) to \((\partial f/\partial x^i)\eta^i \). Thus \(C^1(M) \) is complete.

Theorem 3. Let \(M \) be a compact differentiable manifold of class \(C^r \), provided with a Riemannian tensor \(g_{ij} \) of class \(r - 1 \). Then \(C^r(M) \) as a normed algebra (under the norm of Theorem 2) determines the Riemannian structure of \(M \). More precisely, if as normed algebras \(C^r(M) \) and \(C^r(N) \) (\(M \) and \(N \) compact) are equivalent, there is an isometry of class \(C^r \) of \(M \) onto \(N \).

Proof. According to Theorem 1, there is a nonsingular \(C^r \)-homeomorphism \(H(M) = N \), which induces the equivalence \(I(C^r(M)) = C^r(N) \). Let \(y^i = y^i(x) \) be local equations of \(H \), and let \(I(f) = F \); then
If η is a contravariant vector at (x) and ξ is the vector $(\partial y/\partial x^i)\eta^i$ at $y(x)$, then $(\partial f/\partial x^i)(x) = (\partial F/\partial y^i)\xi^i$. Regarding η and ξ as continuous linear functionals over $C^r(M)$ and $C^r(N)$ respectively according to the formulas $\eta(f) = (\partial f/\partial x^i)\eta^i$, $\xi(F) = (\partial F/\partial y^i)\xi^i$, then $\eta(f) = \xi(F)$. Thus if I^* is the equivalence of the conjugate spaces of $C^r(M)$ and $C^r(N)$ induced by I, then $I^*(\eta) = \xi$. Hence $\|\eta\| = \|\xi\|$. We now show $\|\eta\| = (g_{ij}\eta^i\eta^j)^{1/2}$, i.e. $\|\eta\|$ equals the magnitude of η. Without loss of generality we assume η is a unit vector. Now

$$
\|\eta\| = \sup_{f} \left\{ \frac{\eta(f)}{\|f\|} \right\} = \sup_{f} \frac{\|\eta(f)\|}{\max_{x \in M} \|f\| + \max_{x \in M} |\eta(f)|} \leq 1.
$$

According to Lemma 3, given any $\epsilon, \delta > 0$ there exists $f \in C^r(M)$ such that

$$
\eta(f) = 1, \quad \max_{x \in M} \left(g^{ii} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} \right)^{1/2} < 1 + \epsilon, \quad \max_{x \in M} |f(x)| < \delta.
$$

Therefore $1 \leq \|f\| < 1 + \epsilon + \delta$, so $\|\eta\| \geq 1$.

Thus we have shown $\|\eta\| = 1 = (g_{ij}\eta^i\eta^j)^{1/2}$. Similarly $\|\xi\| = (h_{ij}\xi^i\xi^j)^{1/2}$, where h_{ij} is the metric tensor on N. It follows that $g_{ij}\eta^i\eta^j = h_{ij}\xi^i\xi^j$, so that $g_{ij}\eta^i\eta^j = h_{kl}(\partial y^k/\partial x^i)(\partial y^l/\partial x^j)\eta^i\eta^j$ for arbitrary tangent vector η to M. Hence $g_{ij} = h_{kl}(\partial y^k/\partial x^i)(\partial y^l/\partial x^j)$, so that H is an isometry of class C^r.

2. Lemmas on differentiable manifolds.

Lemma 1. If M is a differentiable manifold of class C^r, and if $P_0 \in M$ and K is a closed set not containing P_0, then there is an $f \in C^r(M)$ such that $f(P_0) = 1$, $f(P) = 0$ for $P \in K$.

Proof. If (x) is an admissible coordinate system about P_0 with P_0 as origin, with $\sum x^i x^i < 4\delta^2$, and with range in the complement of K, then the following function f is the required function:

$$
f = \left(1 - \frac{\sum x^i x^i}{\delta^2}\right)^{r+1} \quad \text{for} \quad \sum x^i x^i \leq 4\delta^2,
$$

$$
f = 0 \quad \text{for all other points of} \quad M.
$$

Lemma 2. If H is a homeomorphism of a differentiable manifold M of class C^r onto a differentiable manifold N of class C^r, and if for every $F \in C^r(N)$ the induced function f defined by $f(x) = F(H(x))$ belongs to $C^r(M)$, then H is a differentiable homeomorphism of class C^r.

Proof. Let $P \in M$, and let (x) and (y) be admissible coordinate
systems about \(P \) and \(H(P) \) respectively, the domain of \((y) \) being \(\sum y^i y^i < 3 \). Let \(y^i = y^i(x) \) be local equations of \(H \). Define

\[
A(\theta) = \frac{\int_1^\theta [(t-1)(t-2)]^r dt}{\int_1^2 [(t-1)(t-2)]^r dt}.
\]

Then for each \(i \) the function \(F^i \) defined as follows is of class \(C^r \) over \(N \):

\[
F^i = y^i \quad \text{for} \quad \sum y^i y^i \leq 1,
\]

\[
F^i = y^i - y^i A(\sum y^i y^i) \quad \text{for} \quad 1 \leq \sum y^i y^i \leq 2,
\]

\[
F^i = 0 \quad \text{elsewhere on} \quad N.
\]

The induced function \(F^i(H(x)) \) is by hypothesis of class \(C^r \) on \(M \), hence \(y^i(x) \) is of class \(C^r \) near \(P \).

Lemma 3. Let \(M \) be a differentiable manifold of class \(C^r \) provided with a Riemannian metric \(g_{ij} \) of class \(C^{r-1} \). Let \(P_0 \in M \), let \(\eta \) be a unit contravariant vector at \(P_0 \), and let \(\epsilon \), \(\epsilon > 0 \). Then there exists a function \(f \) of class \(C^r \) on \(M \) with the following properties:

1. \[\frac{\partial f}{\partial x^i} \eta^i = 1 \quad \text{at} \quad P_0, \]
2. \[\sup_{x \in M} \left(g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \right)^{1/2} < 1 + \epsilon, \]
3. \[\sup_{x \in M} |f(x)| < \epsilon. \]

Proof. Let \((x) \) be an admissible coordinate system about \(P_0 \), with \(P_0 \) as origin, with domain \(\sum x^i x^i < 1 \), with \(g_{ij}(x) = \delta_{ij} \) at \((x) = (0) \), and such that the components of \(\eta \) in the coordinate system \((x) \) are \((1, 0, \cdots, 0)\). Let \(d < \epsilon \) be so small that by continuity of \(g^{ij} \) we have \[|g^{ij}(x) - \delta^{ij}| < \epsilon/n^2 \] for \(\sum x^i x^i \leq d^2 \). Then the following is the required function:

\[
f = \left(1 - \frac{\sum x^i x^i}{d^2} \right)^{r+1} x^1 \quad \text{for} \quad \sum x^i x^i \leq d^2,
\]

\[
f = 0 \quad \text{elsewhere on} \quad M.
\]

To show this, note first that on \(\sum x^i x^i = d^2 \) all derivatives of \(f \) up to and including those of \(r \)th order are zero, so that \(f \) is of class \(C^r \) over \(M \). Next, note that
\[
\frac{\partial f}{\partial x^1} = \left(1 - \sum \frac{x^i x^i}{d^2}\right)^r \left(1 - \sum \frac{x^i x^i}{d^2} - \frac{2(r + 1)(x^1)^2}{d^2}\right),
\]
\[
\frac{\partial f}{\partial x^a} = -\frac{2(r + 1)x^1 x^a}{d^2} \left(1 - \sum \frac{x^i x^i}{d^2}\right)^r, \quad \alpha = 2, 3, \ldots, n.
\]

It is clear that at \(P_0\) we have
\[
\frac{\partial f}{\partial x^1} = 1, \quad \frac{\partial f}{\partial x^a} = 0, \quad \frac{\partial f}{\partial x^i} \eta^i = 1.
\]

Now compute as follows:
\[
\sum \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} = \left(1 - \sum \frac{x^i x^i}{d^2}\right)^{2r} \left[\left(1 - \sum \frac{x^i x^i}{d^2} - \frac{2(r + 1)(x^1)^2}{d^2}\right)^2 + \frac{4(r + 1)^2(x^1)^2}{d^4} \sum x^a x^a\right]
\]
\[
= \left(1 - \sum \frac{x^i x^i}{d^2}\right)^{2r} \left[\left(1 - \sum \frac{x^i x^i}{d^2}\right)^2 + \frac{4(r + 1)(x^1)^2}{d^4} ((2 + r) \sum x^i x^i - d^2)\right].
\]

When \(0 \leq \sum x^i x^i \leq d^2/(2 + r)\), we have
\[
\sum \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \leq \left(1 - \frac{x^i x^i}{d^2}\right)^{2r+2} \leq 1
\]
while when \(d^2/(2 + r) \leq \sum x^i x^i \leq d^2\), we have
\[
\sum \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \leq \left(1 - \frac{x^i x^i}{d^2}\right)^{2r} \left[\left(1 - \frac{x^i x^i}{d^2}\right)^2 + \frac{4(r + 1) \sum x^i x^i}{d^4} ((2 + r) \sum x^i x^i - d^2)\right]
\]
\[
= \left(1 - \frac{x^i x^i}{d^2}\right)^{2r} \left[1 - \frac{3 + 2r}{d^2} \right] = (1 - A)^{2r}(1 - AB)^2
\]
where \(A = (\sum x^i x^i)/d^2, B = 3 + 2r\). This non-negative quantity is zero when \(A = 1\), and equal to \(((1+r)/(2+r))^{2r+2}\) when \(A = 1/(2+r)\).

Hence if we find its derivative with respect to \(A\) is zero at a unique value \(\bar{A}\) between \(A = 1/(2+r)\) and \(A = 1\), this locates its maximum.
either at \overline{A} or at $A = 1/(1 + 2r)$. But

$$
\frac{d}{dA} ((1 - A)^{2r}(1 - AB)^2)
= 2(1 - A)^{2r-1}(1 - AB)(- B + AB - r + rAB)
$$

and since $1 - AB < 0$ for $1/(2 + r) < A < 1$, the only root in this A-interval is $A = (B + r)/(B + rB)$. For this value of A, we find

$$(1 - A)^{2r}(1 - AB)^2 = 4/(1 + 3/2r)^2 < 1.$$

Thus

$$
\sum \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} \leq 1 \quad \text{for} \quad 0 \leq \sum x^i x^i \leq d^2.
$$

Now by our choice of d

$$
g_{ij}(x) < \delta_{ij} + \epsilon/n^2 \quad \text{for} \quad 0 \leq \sum x^i x^i \leq d^2
$$

so that

$$
g_{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} < \sum \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} + \epsilon \leq 1 + \epsilon.
$$

Hence all over M

$$
\left(g_{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^i} \right)^{1/2} < 1 + \epsilon.
$$

As for $\sup |f(x)|$, note that $f = 0$ at $(x) = (0)$ and on $\sum x^i x^i = d^2$, and that f is an odd function of x^1, so that $\max |f(x)|$ in $0 \leq \sum x^i x^i \leq d^2$ is the same as $\max f(x)$ and occurs at a critical point of f not on $\sum x^i x^i = d^2$. From the form of $\partial f/\partial x^i$, it is seen that the critical point wanted is

$$
x^\alpha = 0, \quad \alpha = 2, 3, \ldots, n,
x^1 = d/(1 + 2r)^{1/2}.
$$

Hence

$$
\max |f(x)| = \left(1 - \frac{1}{1 + 2r} \right)^r \frac{d}{(1 + 2r)^{1/2}}
= \left(\frac{2r}{1 + 2r} \right)^r \frac{d}{(1 + 2r)^{1/2}} < d < e.
$$