Topological invariance of ideals in mobs
Author:
A. D. Wallace
Journal:
Proc. Amer. Math. Soc. 5 (1954), 866868
MSC:
Primary 20.0X
MathSciNet review:
0066399
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
P.
Alexandroff, On the dimension of normal spaces, Proc. Roy.
London. Ser. A. 189 (1947), 11–39. MR 0021312
(9,52a)
 [2]
A.
H. Clifford, Semigroups containing minimal ideals, Amer. J.
Math. 70 (1948), 521–526. MR 0025476
(10,12b)
 [3]
A.
H. Clifford and D.
D. Miller, Semigroups having zeroid elements, Amer. J. Math.
70 (1948), 117–125. MR 0023253
(9,330c)
 [4]
Haskell
Cohen, A cohomological definition of dimension for locally compact
Hausdorff spaces, Duke Math. J. 21 (1954),
209–224. MR 0066637
(16,609b)
 [5]
C.
H. Dowker, Mapping theorems for noncompact spaces, Amer. J.
Math. 69 (1947), 200–242. MR 0020771
(8,594g)
 [6]
S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton, 1952.
 [7]
Katsumi
Numakura, On bicompact semigroups, Math. J. Okayama Univ.
1 (1952), 99–108. MR 0048467
(14,18g)
 [8]
Edwin
H. Spanier, Cohomology theory for general spaces, Ann. of
Math. (2) 49 (1948), 407–427. MR 0024621
(9,523d)
 [9]
A. D. Wallace, Outline for algebraic topology, Tulane University, 19491952.
 [10]
A.
D. Wallace, The map excision theorem, Duke Math. J.
19 (1952), 177–182. MR 0046646
(13,765e)
 [11]
A.
D. Wallace, Cohomology, dimension and mobs, Summa Brasil.
Math. 3 (1953), 43–55. MR 0058206
(15,336f)
 [12]
A.
D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ.
3 (1953), 23–28. MR 0062137
(15,933d)
 [1]
 P. Alexandroff, On the dimension of normal spaces, Proc. Roy. Soc. London Ser. A vol. 189 (1947) pp. 1139. MR 0021312 (9:52a)
 [2]
 A. H. Clifford, Semigroups containing minimal ideals, Amer. J. Math. vol. 70 (1948) pp. 521526. MR 0025476 (10:12b)
 [3]
 A. H. Clifford and D. D. Miller, Semigroups having zeroid elements, Amer. J. Math. vol. 70 (1948) pp. 117125. MR 0023253 (9:330c)
 [4]
 H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. vol. 21 (1954) pp. 209224. MR 0066637 (16:609b)
 [5]
 H. Dowker, Mapping theorems for noncompact spaces, Amer. J. Math. vol. 69 (1947) pp. 200242. MR 0020771 (8:594g)
 [6]
 S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton, 1952.
 [7]
 K. Numakura, On bicompact semigroups, Math. J. of Okayama Univ. vol. 1 (1952) pp. 99108. MR 0048467 (14:18g)
 [8]
 E. Spanier, Cohomology theory for general spaces, Ann. of Math. vol. 49 (1948) pp. 407427. MR 0024621 (9:523d)
 [9]
 A. D. Wallace, Outline for algebraic topology, Tulane University, 19491952.
 [10]
 , The map excision theorem, Duke Math. J. vol. 19 (1952) pp. 177182. MR 0046646 (13:765e)
 [11]
 , Cohomology, dimension and mobs, Summa Brasil. Math. vol. 3 (1953) pp. 4354. MR 0058206 (15:336f)
 [12]
 , Inverses in Euclidean mobs, Math. J. of Okayama Univ. vol. 3 (1953) pp. 2328. MR 0062137 (15:933d)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20.0X
Retrieve articles in all journals
with MSC:
20.0X
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939195400663995
PII:
S 00029939(1954)00663995
Article copyright:
© Copyright 1954
American Mathematical Society
