In a recent paper of Wintner [1], an extension is made of a classical
theorem on the Legendre transformation of a convex function (for
details of the proof, see [3], and for related results, cf. [4; 5]). His
assumptions are that the function be strictly convex and of class C'1.
Here we shall prove a more general result which eliminates both of
these restrictions and shows that, in a sense, they are dual to one
another. As two applications we mention a result of Kamke [2] on
the Clairaut differential equation and a theorem on parallel curves
(cf. [3, pp. 481–482]).

Let \(y(x) \) be a convex bounded function of \(x \) on the interval \((a, b)\).
Then \(y \) has monotone nondecreasing right- and left-hand derivates
\(y'_-(x) \leq y'_+(x) \) in \((a, b)\). There will, in general, be two exceptional sets
to consider in reference to these derivates, the set \(j \) consisting of
points \(x \) where \(y'_-(x) \not= y'_+(x) \) and the set \(k \) of the closures of the
\(x \)-intervals where \(y'_+(x) \) (or \(y'_-(x) \)) is constant. \(j \) is an at most de-
numerable set of points while \(k \) is an at most denumerable set of
closed intervals. Let \(K \) be the set of closures of intervals of \(y' \)-values
satisfying \(y'_-(x) < y' < y'_+(x) \) for some \(x \) on \(j \), and \(J \) the set of \(y' \)-values
for which \(y' = y'(x) \) for some \(x \) on \(k \). Furthermore, let \(A = y'_+(a) \),
\(B = y'_-(b) \).

We now consider the correspondence \(X = y'(x) \). This obviously
assigns to every \(x \) not in \(j \) a unique \(X \) not in \(K \) and to every \(X \) not in
\(J \) a unique \(x \) not in \(k \). Thus \(X = y'(x) \) is a unique (monotone and con-
tinuous) correspondence of \((a, b) - (j + k) \) onto \((A, B) - (J + K) \). In
order to extend the domain of definition of this correspondence, put
\(\bar{x} = \bar{x}(X) = 1.\text{u.b.} \) \(T(X) \), where \(T(X) \) is the set of those \(x \)-values at
which \(y'_-(x) \leq X \). \(\bar{x}(X) \) is in \(T(X) \) and \(\bar{x}(X) \) is continuous from the
right.

We now define \(Y = Y(X) \) as

\[
Y = \bar{x}(X) \cdot X - y(\bar{x}(X)).
\]

Letting \(' \) after \(Y \) denote differentiation with respect to \(X \) we have the following

Theorem. \(Y'_+ \) and \(Y'_- \) exist everywhere and are nondecreasing with
\(Y'_- \leq Y'_+ \) and \(Y'_+(X) = \bar{x}(X) \). Furthermore, \(Y'_- \not= Y'_+ \) only on \(J \) and \(Y'_+ \)
can constant only on intervals of \(K \).

Received by the editors April 19, 1954.
In proving this theorem we make use of the following extension of the mean value theorem:

Lemma. If \(f(t) \) has in \((a, b)\) a right- and left-hand derivative at every point and if \(t' < t'' \) are points of \((a, b)\), then there exists a \(t^* \) such that \(t' < t^* < t'' \) and \((t'' - t')f^-((t^*)) \leq f(t'') - f(t') \leq (t'' - t')f^+(t^*) \) or \((t'' - t')f^+(t^*) \leq f(t'') - f(t') \leq (t'' - t')f^-(t^*)\).

To see this set
\[
g(t) = f(t) - (t - t') \frac{f(t'') - f(t')}{t'' - t'}.
\]
g\((t)\) has right- and left-hand derivates in \((t', t'')\) and is certainly continuous on the closure of this interval. Furthermore \(g(t'') = g(t') = f(t') \) and therefore \(g(t) \) assumes a maximum or a minimum in the interior of the interval, say at \(t = t^* \). Then \(g^+(t^*) \leq 0, g^-(t) \geq 0 \) or \(g^+(t^*) \leq 0, g^-(t^*) \geq 0 \) according as \(t^* \) is a maximum or a minimum. This is the desired result.

We shall now show that \(Y_+(x) \) exists everywhere and is equal to \(\bar{x}(x) \). Let \(x_1 \) be greater than \(x \) and \(\Delta x = x_1 - x, \Delta y = \bar{x}(x_1) - \bar{x}(x), \) etc. Then
\[
\Delta x = x_1 \Delta x + X \Delta \bar{x} - \Delta y(\bar{x}).
\]
By the previous lemma, there exists an \(x^* \) such that \(\bar{x} < x^* < x_1 \) (unless \(\bar{x} = \bar{x}_1 \) in which case \(\Delta y = \bar{x}(x) \)) and
\[
(\Delta \bar{x})y^-(x^*) \leq \Delta y \leq (\Delta \bar{x})y^+(x^*),
\]
so that
\[
\Delta Y \leq \bar{x}_1 \Delta x + X(\Delta \bar{x}) - (\Delta \bar{x})y^+(x^*).
\]
But \(X \leq y^-(x^*) \leq X_1 \), hence
\[
(2) \quad \Delta Y \leq \bar{x}_1 \Delta x.
\]
Similarly,
\[
\Delta Y = x_1 \Delta \bar{x} + x \Delta X - \Delta y(\bar{x})
\]
and, since \(x^* \) is strictly between \(\bar{x} \) and \(\bar{x}_1 \) (unless \(\bar{x} = \bar{x}_1 \) in which case \(\Delta y = \bar{x}(x) \)), \(X \leq y^-(x^*) \leq X_1 \). Thus
\[
(3) \quad \Delta Y \geq \bar{x} \Delta X.
\]
We therefore have, by (2) and (3),
\[
\bar{x} \leq \Delta Y/\Delta X \leq \bar{x}_1.
\]
Letting X_1 tend to X we get, since \bar{x} is continuous from the right, $Y^+(X) = \bar{x}(X)$.

Since \bar{x} is a nondecreasing function of X, Y^+_+ is nondecreasing. Furthermore, $Y^-(X) = Y^+_+(X-0) = \bar{x}(X-0)$, $Y^-(X) \leq Y^+_+(X)$, and $Y^-(X)$ is nondecreasing. The points where $Y^-(X) \neq Y^+_+(X)$ are those where $\bar{x}(X-0) \neq \bar{x}(X)$ or where $y^-(x)$ is constant on some interval to the left of \bar{x}, thus belonging to J. Similarly $Y^+_+ = \bar{x}$ is constant only on intervals of K.

Y is thus a convex function of X. We can, therefore, apply the preceding transformation (1) on $Y = Y(X)$. We thus put $x = Y'(X)$ on $[A, B]-(J+K)$ and $\bar{x} = \bar{x}(x)$ = l.u.b. $t(x)$ where $t(x)$ is the set of X such that $Y^-(X) \leq x$.

Finally, let $y^* = y^*(x)$ be defined by

$$y^* = \bar{x}(x) \cdot x - Y[\bar{x}(x)] = \bar{x}(x) \cdot x - \bar{x}[\bar{x}(x)]\bar{x} + y(\bar{x}[\bar{x}(x)]).$$

Now, by the definitions of the functions $\bar{x}(X)$ and $\bar{x}(x)$, $\bar{x}[\bar{x}(x_0)]$ is the largest x such that $y^-(x) \leq y^-(x_0)$. For x not in k, $\bar{x}[\bar{x}(x)] = x$, in which case

$$y^* = \bar{x} \cdot x - x \cdot \bar{x} + y(x) = y.$$

For x in an interval of k, $y(x)$ is linear with the constant slope \bar{x} and assumes the value $y(\bar{x}[\bar{x}(x)])$ at $x = \bar{x}$, and so the last part of (4) shows that $y^* = y$.

Hence $y^* = y$ for all x in $[a, b]$. Thus the transformation (1) treated above is involutory with

$$Y = Y(X) = \bar{x}X - y(\bar{x}), \quad Y^+(X) = \bar{x}$$

and

$$y = y(x) = \bar{x}x - Y(\bar{x}), \quad y'(x) = \bar{x}.$$

If y has a derivative everywhere, then j is empty and therefore K is empty. Thus if y is differentiable everywhere, Y is strictly convex and vice versa. Similarly, if y is strictly convex, the Y has a derivative everywhere and vice versa. Finally, if y or Y are strictly convex and have derivatives everywhere, or if both are strictly convex or both are everywhere differentiable, then both are strictly convex and everywhere differentiable.

As a first application, we mention the following theorem:

The (outside) parallel curves of a convex curve are of class C^1 (at least).

In effect, rolling a circle outside the curve increases the support
function which means adding a strictly convex term to the Legendre transform (for suitable choice of coordinates).

As a second application, we mention the result of Kamke [2] on the Clairaut differential equation, namely, the existence of a non-linear solution of $y = y'x + f(y')$ when f is strictly convex. Here, the Legendre transform of f provides a solution if it is differentiable, which it must be in virtue of the strict convexity of f.

REFERENCES