By a tree we mean a continuum (= compact connected Hausdorff space) in which every pair of distinct points is separated by a third point. It is well known [4] that a dendrite is simply a metric tree. In this note we give a new characterization of dendrites and trees in terms of partially ordered spaces.

Recall from [3] that a POTS (= partially ordered topological space) is a topological space \(X \) endowed with a partial order, \(\leq \), which is semicontinuous in the sense that \(L(x) = \{ a : a \leq x \} \) and \(M(x) = \{ a : x \leq a \} \) are closed sets for each \(x \in X \). A partial order is order dense if \(x < y \) implies there is a \(z \) such that \(x < z < y \). A chain of a partially ordered set is a subset which is linear with respect to the partial order. An element in a partially ordered set is minimal (maximal) if it has no proper predecessor (successor).

Suppose that \(K \) is a locally connected continuum and \(e \in K \). Define a relation, \(\leq \), in \(K \) by \(x \leq y \) if, and only if, \(x = e \), or \(x = y \), or \(x \) separates \(e \) and \(y \) in \(K \). From [3] we have

Lemma 1. The relation \(\leq \) is a semicontinuous partial order.

We shall require two more results from [3]. Lemma 2 is originally due to Wallace [2].

Lemma 2. A compact POTS contains a maximal element.

Lemma 3. A compact order dense POTS is connected if its set of minimal elements is connected.

Lemma 4. A tree is locally connected.

Proof. Let \(X \) be a tree; by [1, p. 140] \(X \) is regular in the sense that if \(x \in U \subseteq X \), \(U \) open, then there is a neighborhood \(V \) of \(x \), with \(\overline{V} \subseteq U \) and such that the frontier of \(V \) is finite. By [4, p. 19] \(X \) is locally connected. Since the above arguments are valid in our situation, the proof is complete.

We may now prove our chief result.

Theorem 1. Let \(X \) be a compact Hausdorff space. A necessary and sufficient condition that \(X \) be a tree is that \(X \) admit a partial order, \(\leq \), satisfying

(i) \(\leq \) is semicontinuous,

Presented to the Society, June 19, 1954; received by the editors April 23, 1954.
(ii) \(\leq \) is order dense,
(iii) for \(x \in X, y \in X \), it follows that \(L(x) \cap L(y) \) is a non-null chain,
(iv) \(M(x) - x \) is an open set, for each \(x \in X \).

Proof. Let \(X \) be a tree; choose \(e \in X \) and let \(X \) have the semi-
continuous partial order of Lemma 1. To establish (ii), let \(x < y \) and
suppose \(z \) separates \(x \) and \(y \), i.e.,

\[
X - z = C \cup D, \quad C \cap D, \quad x \in C, \quad y \in D.
\]

If \(x = e \), then, by definition, \(x < z < y \). Otherwise, we have

\[
X - x = A \cup B, \quad A \cap B, \quad e \in A, \quad y \in B.
\]

It is easy to see that \(x \in C \) and \(y \in B \) imply \(A \subset C \). Therefore \(e \in C \),
so that \(z < y \). Likewise, \(z \in B \), so that \(x < z \). To prove (iii), we first
note that by definition of the partial order, \(e \in L(x) \cap L(y) \) for any
\(x \) and \(y \) in \(X \). It remains to show that \(L(x) \) is a chain. If \(e < p_1, p_2 < x \),
we have

\[
X - p_i = A_i \cup B_i, \quad A_i \cap B_i, \quad x \in B_1 \cap B_2, \quad e \in A_1 \cap A_2.
\]

It is clear that \(p_1 \in A_2 \) implies \(p_1 \leq p_2 \) and \(p_1 \in B_2 \) implies \(p_2 \leq p_1 \). To
establish (iv), we note simply that \(M(x) - x = X - x \) if \(x = e \), and if \(x \neq e \), then

\[
M(x) - x = \bigcup \{ B_\alpha : X - x = A_\alpha \cup B_\alpha, \ A_\alpha \cap B_\alpha, \ e \in A_\alpha \}.
\]

In either case, \(M(x) - x \) is open. Thus the condition is necessary.

Suppose now that \(X \) admits a partial order satisfying (i)–(iv).
By Lemma 3, \(X \) is connected and hence is a continuum. If \(x < y \),
then by (ii) there is \(z \in X \) such that \(x < z < y \). By (i) and (iv), \(M(z) \) is
closed and \(M(z) - z \) is open, so that \(z \) separates \(x \) and \(y \). If \(x \) and \(y \) are
not comparable, then by (iii) and Lemma 2, there exists \(z = \max (L(x) \cap L(y)) \).
Choose \(t \) such that \(z < t < x \). Then \(x \in M(t) - t \) and \(y \in X - M(t) \), whence \(t \) separates \(x \) and \(y \). This completes the proof.

By Theorem 1 and Lemma 4, we have at once:

Corollary. Let \(X \) be a compactum. A necessary and sufficient condi-
tion that \(X \) be a dendrite is that \(X \) admit a partial order satisfying
(i)–(iv) of Theorem 1.

Bibliography

CORRECTION TO "UNIQUENESS OF THE PROJECTIVE PLANE WITH 57 POINTS"

MARSHALL HALL, JR.

Professor Gunter Pickert has pointed out to me that there is an error in my paper [Proc. Amer. Math. Soc. vol. 4 (1953) pp. 912–916]. The equation on page 915 which reads \(12 + 3s + 2t = 24\) should read \(12 + 3s + 2t + u = 24\). This invalidates my conclusion \(u = 0\) from which I deduce \(U = 0\), which is necessary for the rest of the paper. I give here a new proof that \(U = 0\).

We must show that in a 57 point plane a line containing points \(ACC\) is not possible, or that \(U = 0\). The proof is by showing that if there is a line \(ACC\) we reach a contradiction. We may take \(ACC\) as \(A_1C_4C_6\) by numbering points appropriately. We now reletter by the following rule:

\[
\begin{align*}
A_1 & A_2 A_3 A_4 B_1 B_2 B_3 C_4 C_6 \\
A_1 & B_1 B_6 A_0 B_4 B_2 A_2 B_3 B_6
\end{align*}
\]

and obtain the following configuration:

\[
\begin{align*}
A_1 & B_1 B_2 B_3 \\
A_0 & B_1 B_6 B_6 \\
A_0 & A_1 A_2 \\
A_1 & B_1 B_4 \\
A_1 & B_2 B_6 \\
A_1 & B_3 B_6 \\
A_2 & B_1 B_6 \\
A_2 & B_2 B_6 \\
A_2 & B_3 B_4
\end{align*}
\]