FINITELY GENERATED EXTENSIONS OF
DIFFERENCE FIELDS

RICHARD M. COHN

Let \(\mathcal{J} \), \(\mathcal{K} \), \(\mathcal{K}^* \) be difference fields such that \(\mathcal{J} \subset \mathcal{K} \subset \mathcal{K}^* \). We shall prove that if \(\mathcal{K}^* \) is a finitely generated extension of \(\mathcal{J} \), \(\mathcal{K}^* = \mathcal{J}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), then \(\mathcal{K} \) is also a finitely generated extension of \(\mathcal{J} \).

We introduce a new notation for the \(\alpha_i \). Let \(\beta_1, \ldots, \beta_q \) denote a subset of the \(\alpha_i \) annulling no nonzero difference polynomial with coefficients in \(\mathcal{K} \) and such that each \(\alpha_i \) annuls some nonzero difference polynomial with coefficients in \(\mathcal{K}(\beta_1, \ldots, \beta_q) \). We denote the \(\alpha_i \) not included among the \(\beta_i \) by \(\gamma_1, \ldots, \gamma_p \), \(p = n - q \).

Let \(\Lambda \) be the reflexive prime difference ideal in \(\mathcal{K}\{u_1, \ldots, u_q; y_1, \ldots, y_p\} \) with the generic zero \(u_i = \beta_i, i = 1, \ldots, q; y_j = \gamma_j, j = 1, \ldots, p \). We denote a characteristic set of \(\Lambda \) by

\[
(1) \quad A_{10}, \ldots, A_{1k}; \quad A_{20}, \ldots, A_{2k}; \ldots; \quad A_{p0}, \ldots, A_{pk},
\]

where \(A_{i0} \) introduces \(y_i \). Let \(G \) be the difference field formed by adjoining the coefficients of the \(A_{ij} \) to \(\mathcal{J} \). Evidently \(G \subset \mathcal{K} \). The result stated above will follow when we show that \(G = \mathcal{K} \).

We shall describe what we mean by the characteristic sequences \(B_{ij}, i = 1, \ldots, p; j = 0, 1, \ldots, \) of \(\Lambda \) formed from (1). This concept has been previously defined only in special cases.

Let \(t_i \) denote the order of \(A_{i0} \) in \(y_i \). We let \(B_{10} = A_{10} \). Suppose \(B_{10}, \ldots, B_{1,k-1} \) have been defined. Then, if there is an \(A_{ij} \) of order \(t_i + k \) in \(y_i \), we let \(B_{ik} \) be that \(A_{ij} \). Otherwise \(B_{ik} \) is defined as the remainder of the transform of \(B_{1,k-1} \) with respect to the chain \(B_{10}, \ldots, B_{1,k-1} \). It is easy to see that, for any \(r, B_{1r} \) is of order \(t_i + r \) in \(y_i \) and, unless it is equal to some \(A_{ij} \), of the same degree in the \((t_i+r)\)th transform of \(y_i \) as is \(B_{1,k-1} \) in the \((t_i-1+r)\)th transform of \(y_i \).

Let \(B_{20} = A_{20} \). Suppose \(B_{20}, \ldots, B_{2,k-1} \) have been defined. Then if

Received by the editors March 1, 1954.

1 The brackets () denote field adjunction of the enclosed elements and their transforms so as to form a difference field. Similarly, brackets \{ \} denote ring adjunction of the enclosed elements and their transforms. Field and ring adjunctions in the usual sense are denoted by brackets () and \[\] respectively. For other terms used see [1] (where the term “basic set” corresponds to our “characteristic set”) and [3].

2 If \(p = 0 \), \(\Lambda \) is the ideal consisting only of 0, and no \(A_{ij} \) are defined.

3 If \(p = 0 \), we define \(G \) to be \(\mathcal{J} \).

4 Throughout this discussion we form the remainder treating the \(B_{ij} \) not as difference polynomials but as polynomials as in Chapter IV of [2]. The \(y_{ij}, j \geq t_i \), are ordered lexicographically. The remaining \(y_{ij} \) and the \(u_{ij} \) precede them and are ordered among themselves in any convenient way. Of course, only a finite number of indeterminates are present and need be ordered at any step.
there is an A_{2j} of order $t_2 + k$ we let B_{2k} be that A_{2j}. Otherwise B_{2k} is defined as the remainder of the transform of $B_{2,k-1}$ with respect to the chain $B_{10}, \ldots, B_{1r}; B_{20}, \ldots, B_{2,k-1}$, where r is chosen as the least integer such that no transform of y_{10} occurring in $B_{20}, \ldots, B_{2,k-1}$ or the transform of $B_{2,k-1}$ is of order exceeding $t_1 + r$. Proceeding similarly we let $B_{30} = A_{30}$. When $B_{30}, \ldots, B_{3,k-1}$ have been defined, we define B_{3k} as the A_{3j} of the proper order, if such exists, or as the remainder of the transform of $B_{3,k-1}$ with respect to $B_{10}, \ldots, B_{1s}; B_{20}, \ldots, B_{2r}$, where s and r are such that no transform of y_{20} occurring in $B_{30}, \ldots, B_{3,k-1}$ or the transform of $B_{3,k-1}$ is of order exceeding $t_2 + r$, and that no transform of y_{10} occurring in these polynomials or in B_{20}, \ldots, B_{2r} is of order exceeding $t_1 + s$.

Continuing in this way we define the $B_{ij}, i = 1, \ldots, p; j = 0, 1, \ldots, r$. Each B_{ij} is of order $t_i + j$ in y_i, and it is either a polynomial of the characteristic set of Λ which is of this order in y_i and free of $y_k, k > i$, or it is of the same degree in the $(t_i + j)$th transform of y_i as is $B_{i,j-1}$ in the $(t_i - 1 + j)$th transform of y_i. Of course, B_{ij} is free of $y_u, k > i$.

Given an integer $r \geq 0$ we let s_p denote the maximum of t_p and r. Let $r_p = s_p - t_p$. We then define s_{p-1} to be the maximum of t_{p-1}, r, and the order of the highest transform of y_{p-1} appearing in the polynomials B_{p0}, \ldots, B_{pr}, and let $r_{p-1} = s_{p-1} - t_{p-1}$. We define s_{p-2} as the maximum of t_{p-2}, r, and the order of the highest transform of y_{p-2} occurring in $B_{p-1,0}, \ldots, B_{p-1,r_{p-1}}; B_{p0}, \ldots, B_{pr}$. Continuing in this way we define successively $s_{p-3}, s_{p-4}, \ldots, s_1$ and let $r_i = s_i - t_i, i = 1, \ldots, p$. Then

$$
(2) \quad B_{10}, \ldots, B_{1r}; B_{20}, \ldots, B_{2r}; \ldots; B_{p0}, \ldots, B_{pr}
$$

is a chain. For s such that no $u_{ij}, j > s$, occurs in (2) we define Λ_{sr} as the prime p. i. (polynomial ideal5) in the indeterminates $u_{ij}, i = 1, \ldots, q; j = 0, 1, \ldots, s$, and $y_{km}, k = 1, \ldots, p; m = 0, 1, \ldots, s_k$, which consists of those polynomials of Λ which involve only these u_{ij} and y_{km}. Then (2) constitutes a characteristic set for Λ_{sr} with B_{ij} introducing y_{i,t_i+j}. The parametric indeterminates of Λ_{sr} corresponding to this choice of characteristic set are those u_{ij} occurring among its indeterminates and the y_{km} with $m < l_m$. We note that all coefficients of the B_{ij} are rational combinations of the coefficients appearing in (1) and their transforms.

Let λ be any element of \mathcal{C}. It will evidently suffice to show that λ is in \mathcal{G}. We choose a positive integer r such that λ is in the field formed by adjoining to \mathcal{G} the $\alpha_{ij}, i = 1, \ldots, n; j = 0, \ldots, r$. Let $s \geq r$ be such that, with the r just chosen, (2) is a characteristic set of

5 Following Chapter IV of [2] we use this term to distinguish ideals of polynomials in the usual sense from difference ideals.
a prime \(p \). By the last remark of the preceding paragraph the coefficients of \((2)\) are in \(G \). Since also \(G \subseteq \mathcal{C} \) it is readily seen that \((2)\) is the characteristic set of a prime \(p \). \(\Pi \) with coefficients in \(G \) and involving the same indeterminates as \(\Lambda_{sr} \). Similarly \((2)\) is the characteristic set of a prime \(p \). \(\Pi' \) with coefficients in \(G(\lambda) \) and involving the same indeterminates as \(\Lambda_{sr} \).

We obtain a generic zero of \(\Lambda_{sr} \), \(\Pi \), or \(\Pi' \) by putting \(u_{ij} = \beta_{ij} \); \(\gamma_{ij} = \gamma_{ij} \) for the appropriate ranges of the subscripts. We shall denote by \(\delta_k \), where \(k \) ranges over a suitable set of integers, those \(\beta_{ij} \) and \(\gamma_{ij} \) of the generic zero which have been equated to the \(u_{ij} \) and \(\gamma_{ij} \) of the previously described set of parametric indeterminates of \(\Lambda_{sr} \) (which are also, of course, a set of parametric indeterminates for either \(\Pi \) or \(\Pi' \)). The remaining \(\gamma_{ij} \) of the generic zero shall henceforth be denoted by \(\epsilon_m \), where \(m \) ranges over a suitable set of integers.

The degree of \(G(\delta_k, \epsilon_m) \) with respect to \(G(\delta_k) \) is given by the product of the degrees\(^6\) of the polynomials of \((2)\) in the indeterminates of \(\Pi \) which they respectively introduce. We see in the same way that this product is the degree of \(G(\lambda)(\delta_k, \epsilon_m) \) with respect to \(G(\lambda)(\delta_k) \). But the fields \(G(\lambda)(\delta_k, \epsilon_m) \) and \(G(\delta_k, \epsilon_m) \) coincide because, by the stipulations concerning \(r \) and \(s \), \(\lambda \) is in \(G(\delta_k, \epsilon_m) \). Hence the degrees of \(G(\delta_k, \epsilon_m) \) with respect to its two subfields \(G(\delta_k) \) and \(G(\lambda, \delta_k) \) are equal. Since these degrees are finite it follows that these subfields must be identical. In other words, \(\lambda \) is in \(G(\delta_k) \).

We thus see that there exist elements \(P \) and \(Q \) in \(G[\delta_k] \), with \(P \) not equal to zero, such that \(P\lambda = Q \). Now the \(\delta_k \) annul no nonzero polynomial with coefficients in \(G(\lambda) \). Hence the relation \(P\lambda = Q \) must be an identity in the \(\delta_k \). By equating coefficients of a suitable power product of the \(\delta_k \) on both sides of this equation we find \(p\lambda = q \), \(p \) and \(q \) in \(G \), and \(p \neq 0 \). Hence \(\lambda \) is in \(G \). This completes the proof.

REFERENCES

Rutgers University

\(^6\) This follows from the work on pp. 89 and 90 of [2]. The inductive argument given there shows that a generic zero of \(\Pi \) can be constructed by transcendental adjunctions followed by successive algebraic adjunctions of degrees equal to the degrees of the polynomials of the characteristic set in the indeterminates they introduce.