ON THE INTERSECTIONS OF THE COMPONENTS OF A DIFFERENCE POLYNOMIAL

RICHARD M. COHN

The purpose of this note is to prove the following theorem:

Solutions common to two distinct components\(^1\) of the manifold of a difference polynomial annul the separants of the polynomial.

We begin by considering a field \(K\), not necessarily a difference field, and a set of polynomials \(F_1, F_2, \ldots, F_p\) in \(K[u_1, \ldots, u_q; x_1, \ldots, x_p]\), the \(u_i\) and \(x_j\) being indeterminates, where for each \(j, j = 1, \ldots, p-1\), \(F_j\) is free of the \(x_k, k > j\). We shall show that any zero of \(F_1, \ldots, F_p\) which annuls no formal partial derivative \(\partial F_j/\partial x_j\) belongs to just one component of \(\{F_1, \ldots, F_p\}_0\).\(^2\) Furthermore, this component is of dimension \(q\).

Proof. Let \(u_i = y_i, i = 1, \ldots, q; x_j = \alpha_j, j = 1, \ldots, p\), be a zero of \(F_1, \ldots, F_p\) which annuls no \(\partial F_j/\partial x_j\). If \(y_i, \ldots, y_q; \alpha_i, \ldots, \alpha_p\) is a zero of \(F_1, \ldots, F_p\) which specializes to \(y_i, \ldots, y_q; \alpha_i, \ldots, \alpha_p\), then this zero too annuls no \(\partial F_j/\partial x_j\). It follows from this that \(\alpha_i\) is algebraic over \(K(\gamma'_1, \ldots, \gamma'_q)\), and that for each \(k, 1 < k \leq p\), \(\alpha'_k\) is algebraic over \(K(\gamma'_1, \ldots, \gamma'_q; \alpha'_1, \ldots, \alpha'_{k-1})\). This implies that a component of the manifold of \(\{F_1, \ldots, F_p\}_0\) containing \(y_1, \ldots, y_q; \alpha_1, \ldots, \alpha_p\) is of dimension at most \(q\).

We let \(u_i = t_i + \gamma_i, i = 1, \ldots, q; x_j = \alpha_j + h_j, j = 1, \ldots, p\). Here the \(t_i\) denote new indeterminates and the \(h_j\) certain formal series in positive integral powers of the \(t_i\). We shall show that the \(h_j\) may be so chosen that these substitutions annul \(F_1, \ldots, F_p\). In fact, the lemma proved in [3] shows that for each \(k, 1 \leq k \leq p\), we may annul \(F_k\) by substitutions \(u_i = t_i + \gamma_i, i = 1, \ldots, p, x_j = s_j + \alpha_j, j < k, x_k = \alpha_k + h'_k\), where the \(s_j, j = 1, \ldots, p\), are new indeterminates, and \(h'_k\) is a formal series in positive integral powers of the \(t_i\) and \(s_j, j < k\). For \(h_1\) we take \(h'_1\); for \(h_2\) we take the result of replacing \(s_1\) in \(h'_2\) by \(h'_1\), and so on.

With the \(h_j\) as described let \(\Sigma\) denote the set of polynomials in \(K[u_1, \ldots, u_q; x_1, \ldots, x_p]\) which are annulled by the above substitutions. Evidently \(\Sigma\) is a prime p. i. (polynomial ideal). Its dimen-

1 The term “component,” not previously defined for difference manifolds, is to have the expected meaning: a component is a maximal irreducible submanifold of a manifold. For definitions of other terms and symbols see [2; 3; 4].

2 As in Chapter IV of [1] this notation indicates the perfect polynomial ideal generated by \(F_1, F_2, \ldots, F_p\).
sion is q and the u_i form a parametric set. For evidently Σ can contain no polynomial in the u_i alone, while the conclusion of the preceding paragraph but one shows that its dimension cannot exceed q. The result of that paragraph also shows that no component of $\{ F_1, \ldots, F_p \}_0$ can properly contain the manifold of Σ, for then its dimension would exceed q. Hence this manifold is itself a component of $\{ F_1, \ldots, F_p \}_0$.

Let \mathcal{M} be a component of $\{ F_1, \ldots, F_p \}_0$ which contains $\gamma_1, \ldots, \gamma_q; \alpha_1, \ldots, \alpha_p$, and let Λ be the prime p. i. in $K[u_1, \ldots, u_q; x_1, \ldots, x_p]$ whose manifold is \mathcal{M}. We must show that Λ is Σ. If Λ is of dimension 0 then, because Σ vanishes for a zero of Λ, and every zero must be a generic zero, Σ is contained in Λ. Since the manifolds of both are components of the same manifold, it follows that $\Lambda = \Sigma$ (and that $q = 0$). We suppose that Λ is of positive dimension, and that Λ and Σ are distinct. Then, since Λ cannot contain Σ, there is a polynomial P in Σ which is not in Λ. Then Λ possesses a zero not annulling P of the form

\begin{equation}
\begin{aligned}
u_i &= \gamma_i + g_i, \quad i = 1, \ldots, q; \\
x_j &= \alpha_j + f_j, \quad j = 1, \ldots, p,
\end{aligned}
\end{equation}

where the g_i and the f_j are series in positive integral powers of a parameter t.

It is evident that (1) is a zero of F_1, \ldots, F_p. We may also obtain a zero of these polynomials of the form

\begin{equation}
\begin{aligned}
u_i &= \gamma_i + g_i, \quad i = 1, \ldots, q; \\
x_j &= \alpha_j + f_j', \quad j = 1, \ldots, p,
\end{aligned}
\end{equation}

where the f_j' are again series in positive integral powers of t, and each f_j' is obtained by replacing the $t_i, i = 1, \ldots, p$, in h_j by the corresponding g_i. It is evident from the manner of formation of (2) that it is a zero of Σ.

We replace the u_i in F_1 by $\gamma_i + g_i, i = 1, \ldots, q$. There results a polynomial \bar{F}_1 in x_1 with coefficients power series in t. \bar{F}_1 vanishes, but its formal derivative $d\bar{F}_1/dx_1$ does not, when we put $t = 0$, $x_1 = \alpha_1$. It follows that there is a unique series f''_1 in positive integral powers of t such that $x_1 = \alpha_1 + f''_1$ is a solution of $\bar{F}_1 = 0$. We now replace the $u_i, i = 1, \ldots, q$, and x_1 in F_2 by $\gamma_i + g_i$ and $\alpha_1 + f''_1$ respectively to obtain a polynomial \bar{F}_2 in x_2 with coefficients power series in t. As before, we see that $\bar{F}_2 = 0$ possesses a solution $x_2 = \alpha_2 + f''_2$, where f''_2 is a series in positive integral powers of t. This series is unique. Continuing in this way we find uniquely determined $f''_j, j = 1, \ldots, p$, which are series in positive integral powers of t such that $u_i = \gamma_i + g_i$,
\[i = 1, \ldots, q; x_j = \alpha_j + \beta_j, \ j = 1, \ldots, p, \text{ is a zero of } F_1, \ldots, F_p. \]

The uniqueness of the \(\beta_j \) shows that (1) and (2) are identical. Hence (1) annuls \(\Sigma \), and, in particular, it annuls \(P \). We have thus obtained a contradiction. This completes the proof of our statement concerning the zeros of \(F_1, \ldots, F_p \).

Now let \(\mathcal{J} \) be a difference field and \(A \) a polynomial of \(\mathcal{J}\{y_1, \ldots, y_n\} \). We shall prove the theorem stated at the beginning of this note. We may suppose that a transform of some \(y_i \), say of \(y_n \), appears effectively in \(A \). Let \(y_i = \alpha_i, \ i = 1, \ldots, n, \) be a zero of \(A \). It will suffice to assume that the \(\alpha_i \) are not a zero of the \(y_n \)-separant of \(A \) and show that this implies that only one component of the manifold of \(A \) contains the \(\alpha_i \).

It is evident that the \(\alpha_i \) must annul just one irreducible factor, say \(F \), of \(A \), and do not annul the \(y_n \)-separant of \(F \). Hence we need merely show that the \(\alpha_i \) are contained in only one component of the manifold of \(F \). We shall suppose that this is not so and obtain a contradiction. We assume first that \(F \) is of equal order and effective order in \(y_n \).

Let \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) denote two distinct components of the manifold of \(F \), each containing the \(\alpha_i \). Let \(\Sigma_1 \) and \(\Sigma_2 \) denote the corresponding reflexive prime difference ideals. We denote by \(h \) the order of \(F \) in \(y_n \). Since the \(\alpha_i \) do not annul the \(y_n \)-separant of \(F \), \(y_i, \ldots, y_{n-1} \) constitute a parametric set for both \(\Sigma_1 \) and \(\Sigma_2 \), and these ideals are both of order \(h \) in \(y_n \).

We choose an integer \(m \) such that the first \(m+1 \) polynomials of a characteristic sequence of \(\Sigma_1 \) do not constitute the beginning of a characteristic sequence of \(\Sigma_2 \). Let \(\Sigma_1^m \) and \(\Sigma_2^m \) denote the sets consisting of those polynomials of \(\Sigma_1 \) and \(\Sigma_2 \) respectively which involve the \(y_n^k, 0 \leq k \leq m+h \), and a finite subset \(S \) of the \(y_{ij}, i < n \). \(S \) is to include all those \(y_{ij}, i < n \), which appear effectively, or whose transforms appear effectively, in \(F, F_1, \ldots, F_m \) or in the first \(m+1 \) polynomials of a characteristic sequence of \(\Sigma_1 \) or in the first \(m+1 \) polynomials of a characteristic sequence of \(\Sigma_2 \).

\(\Sigma_1^m \) and \(\Sigma_2^m \) may be regarded as prime \(\mathcal{P} \) i.'s in the ring \(\mathcal{J}[S, y_n^0, y_n^1, \ldots, y_n^{m+h}] \). The \(y_{ij} \) of \(S \) and the \(y_n^k, k < h \), constitute a parametric set for both \(\Sigma_1^m \) and \(\Sigma_2^m \). Let \(s \) denote the number of indeterminates in this parametric set.

Our earlier result concerning polynomial ideals shows that there is a unique component \(\mathcal{M} \) of the manifold of \(\{F, F_1, \ldots, F_m\} \), regarded as an ideal of \(\mathcal{J}[S, y_n^0, y_n^1, \ldots, y_n^{m+h}] \), which contains the zero \(y_{ij} = \alpha_{ij} \) of this ideal. The dimension of \(\mathcal{M} \) is \(s \), for \(s \) corresponds to \(q \) of the earlier proof.

Now both \(\Sigma_1^m \) and \(\Sigma_2^m \) contain \(\{F, F_1, \ldots, F_m\} \), while both have
the zero \(y_{ij} = \alpha_{ij} \). Hence their manifolds are in \(\mathcal{M} \). Since their manifolds are of dimension \(s \), however, they must coincide with \(\mathcal{M} \). Hence \(\Sigma_{1m} \) and \(\Sigma_{2m} \) are identical. But \(m \) was chosen so that \(\Sigma_{1m} \) contains a polynomial which is not in \(\Sigma_{2m} \), namely one of the first \(m+1 \) polynomials of a characteristic sequence of \(\Sigma_1 \). We have obtained a contradiction. This completes the proof of the theorem in the case that \(F \) is of equal order and effective order in \(y_n \).

If the order of \(F \) in \(y_n \) exceeds its effective order by \(d > 0 \), we replace each \(y_{nk} \) in \(F \) by \(z_{k-d} \), where \(z \) is a new indeterminate, and subscripts attached to \(z \) denote transforming. \(F \) goes into an irreducible polynomial \(\overline{F} \) which is of equal order and effective order in \(z \).

Evidently each component \(\overline{\mathcal{M}} \) of the manifold of \(\overline{F} \) corresponds to a unique component \(\mathcal{M} \) of the manifold of \(F \), and, conversely, each component of the manifold of \(F \) is obtained from a unique component of the manifold of \(\overline{F} \). The correspondence may be described as follows: each solution in \(\overline{\mathcal{M}} \) is obtained from a solution in \(\overline{\mathcal{M}} \) by leaving unchanged the elements assigned as values to \(y_1, \ldots, y_{n-1} \), and assigning to \(y_n \) an element whose \(d \)th transform is the element assigned as the value of \(z \) in \(\overline{\mathcal{M}} \). This correspondence carries solutions common to two components of the manifold of \(F \) into solutions common to two components of the manifold of \(\overline{F} \). Solutions annulling the \(y_n \)-separant of \(F \) correspond to solutions annulling the \(z \)-separant of \(\overline{F} \).

The preceding proof shows that the theorem stated at the beginning of this note holds for \(\overline{F} \). The correspondence just described shows that its truth for \(\overline{F} \) implies its truth for \(F \). Hence it is true in general.

References

Rutgers University