ON THE INTERSECTIONS OF THE COMPONENTS OF A DIFFERENCE POLYNOMIAL

RICHARD M. COHN

The purpose of this note is to prove the following theorem:

Solutions common to two distinct components of the manifold of a difference polynomial annul the separants of the polynomial.

We begin by considering a field \(K \), not necessarily a difference field, and a set of polynomials \(F_1, F_2, \ldots, F_p \) in \(K[u_1, \ldots, u_q; x_1, \ldots, x_p] \), the \(u_i \) and \(x_j \) being indeterminates, where for each \(j, j = 1, \ldots, p - 1, \) \(F_j \) is free of the \(x_k, k > j \). We shall show that any zero of \(F_1, \ldots, F_p \) which annuls no formal partial derivative \(\partial F_j/\partial x_j \) belongs to just one component of \(\{ F_1, \ldots, F_p \} \). Furthermore, this component is of dimension \(q \).

Proof. Let \(\gamma_1, \gamma_2, \ldots, \gamma_q, \alpha_1, \ldots, \alpha_p \) be a zero of \(F_1, \ldots, F_p \) which annuls no \(\partial F_j/\partial x_j \). If \(\gamma_1', \gamma_2', \ldots, \gamma_q', \alpha_1', \ldots, \alpha_p' \) is a zero of \(F_1, \ldots, F_p \) which specializes to \(\gamma_1, \gamma_2, \ldots, \gamma_q, \alpha_1, \ldots, \alpha_p \), then this zero too annuls no \(\partial F_j/\partial x_j \). It follows from this that \(\alpha_i' \) is algebraic over \(K(\gamma_1', \gamma_2', \ldots, \gamma_q') \), and that for each \(k, 1 < k \leq p \), \(\alpha_k' \) is algebraic over \(K(\gamma_1', \gamma_2', \ldots, \alpha_k', \ldots, \alpha_{k-1}') \). This implies that a component of the manifold of \(\{ F_1, \ldots, F_p \} \) containing \(\gamma_1, \gamma_2, \ldots, \gamma_q, \alpha_1, \ldots, \alpha_p \) is of dimension at most \(q \).

We let \(u_i = u_i + \gamma_i, i = 1, \ldots, q; x_j = \alpha_j + h_j, j = 1, \ldots, p \). Here the \(t_i \) denote new indeterminates and the \(h_i \) certain formal series in positive integral powers of the \(t_i \). We shall show that these substitutions annul \(F_1, \ldots, F_p \). In fact, the lemma proved in [3] shows that for each \(k, 1 \leq k \leq p \), we may annul \(F_k \) by substitutions \(u_i = t_i + \gamma_i, i = 1, \ldots, p, x_j = s_j + \alpha_j, j < k, x_k = \alpha_k + h_k' \), where the \(s_j, j = 1, \ldots, p \), are new indeterminates, and \(h_k' \) is a formal series in positive integral powers of the \(t_i \) and \(s_j, j < k \). For \(h_1 \) we take \(h_1' \); for \(h_2 \) we take the result of replacing \(s_1 \) in \(h_2' \) by \(h_1' \), and so on.

With the \(h_j \) as described let \(\Sigma \) denote the set of polynomials in \(K[u_1, \ldots, u_q; x_1, \ldots, x_p] \) which are annulled by the above substitutions. Evidently \(\Sigma \) is a prime p. i. (polynomial ideal). Its dimen-

Received by the editors April 17, 1954.

1 The term “component,” not previously defined for difference manifolds, is to have the expected meaning: a component is a maximal irreducible submanifold of a manifold. For definitions of other terms and symbols see [2; 3; 4].

2 As in Chapter IV of [1] this notation indicates the perfect polynomial ideal generated by \(F_1, F_2, \ldots, F_p \).
sion is q and the u_i form a parametric set. For evidently Σ can contain no polynomial in the u_i alone, while the conclusion of the preceding paragraph but one shows that its dimension cannot exceed q. The result of that paragraph also shows that no component of $\{ F_1, \ldots, F_p \}_0$ can properly contain the manifold of Σ, for then its dimension would exceed q. Hence this manifold is itself a component of $\{ F_1, \ldots, F_p \}_0$.

Let \mathcal{M} be a component of $\{ F_1, \ldots, F_p \}_0$ which contains $\gamma_1, \ldots, \gamma_q; \alpha_1, \ldots, \alpha_p$, and let Λ be the prime p. i. in $K[u_1, \ldots, u_q; x_1, \ldots, x_p]$ whose manifold is \mathcal{M}. We must show that Λ is Σ. If Λ is of dimension 0 then, because Σ vanishes for a zero of Λ, and every zero must be a generic zero, Σ is contained in Λ. Since the manifolds of both are components of the same manifold, it follows that $\Lambda = \Sigma$ (and that $q = 0$). We suppose that Λ is of positive dimension, and that Λ and Σ are distinct. Then, since Λ cannot contain Σ, there is a polynomial P in Σ which is not in Λ. Then Λ possesses a zero not annulling P of the form

\begin{align*}
&u_i = \gamma_i + g_i, \quad i = 1, \ldots, q; \\
x_j = \alpha_j + f_j, \quad j = 1, \ldots, p,
\end{align*}

where the g_i and the f_j are series in positive integral powers of a parameter t.

It is evident that (1) is a zero of F_1, \ldots, F_p. We may also obtain a zero of these polynomials of the form

\begin{align*}
&u_i = \gamma_i + g_i, \quad i = 1, \ldots, q; \\
x_j = \alpha_j + f_j', \quad j = 1, \ldots, p,
\end{align*}

where the f_j' are again series in positive integral powers of t, and each f_j' is obtained by replacing the $t_i, i = 1, \ldots, p$, in h_j by the corresponding g_i. It is evident from the manner of formation of (2) that it is a zero of Σ.

We replace the u_i in F_1 by $\gamma_i + g_i, i = 1, \ldots, q$. There results a polynomial \bar{F}_1 in x_1 with coefficients power series in t. \bar{F}_1 vanishes, but its formal derivative $d\bar{F}_1/dx_1$ does not, when we put $t = 0$, $x_1 = \alpha_1$. It follows that there is a unique series f_1'' in positive integral powers of t such that $x_1 = \alpha_1 + f_1''$ is a solution of $\bar{F}_1 = 0$. We now replace the $u_i, i = 1, \ldots, q$, and x_1 in F_2 by $\gamma_i + g_i$ and $\alpha_1 + f_1''$ respectively to obtain a polynomial \bar{F}_2 in x_2 with coefficients power series in t. As before, we see that $\bar{F}_2 = 0$ possesses a solution $x_2 = \alpha_2 + f_2''$, where f_2'' is a series in positive integral powers of t. This series is unique. Continuing in this way we find uniquely determined $f_j'', j = 1, \ldots, p$, which are series in positive integral powers of t such that $u_i = \gamma_i + g_i$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
$i = 1, \ldots, q; x_j = \alpha_j + f''_j, j = 1, \ldots, p$, is a zero of F_1, \ldots, F_p.

The uniqueness of the f''_j shows that (1) and (2) are identical. Hence (1) annihilates Σ, and, in particular, it annihilates P. We have thus obtained a contradiction. This completes the proof of our statement concerning the zeros of F_1, \ldots, F_p.

Now let \mathcal{F} be a difference field and A a polynomial of $\mathcal{F}\{y_1, \ldots, y_n\}$. We shall prove the theorem stated at the beginning of this note. We may suppose that a transform of some y_i, say of y_n, appears effectively in A. Let $y_i = \alpha_i, i = 1, \ldots, n$, be a zero of A. It will suffice to assume that the α_i are not a zero of the y_n-separant of A and show that this implies that only one component of the manifold of A contains the α_i.

It is evident that the α_i must annihilate just one irreducible factor, say F, of A, and do not annihilate the y_n-separant of F. Hence we need merely show that the α_i are contained in only one component of the manifold of F. We shall suppose that this is not so and obtain a contradiction. We assume first that F is of equal order and effective order in y_n.

Let \mathcal{M}_1 and \mathcal{M}_2 denote two distinct components of the manifold of F, each containing the α_i. Let Σ_1 and Σ_2 denote the corresponding reflexive prime difference ideals. We denote by h the order of F in y_n. Since the α_i do not annihilate the y_n-separant of F, y_1, \ldots, y_{n-1} constitute a parametric set for both Σ_1 and Σ_2, and these ideals are both of order h in y_n.

We choose an integer m such that the first $m+1$ polynomials of a characteristic sequence of Σ_1 do not constitute the beginning of a characteristic sequence of Σ_2. Let Σ_{1m} and Σ_{2m} denote the sets consisting of those polynomials of Σ_1 and Σ_2 respectively which involve the y_k^n, $0 \leq k \leq m+h$, and a finite subset S of the $y_{ij}, i < n$. S is to include all those $y_{ij}, i < n$, which appear effectively, or whose transforms appear effectively, in F, F_1, \ldots, F_m or in the first $m+1$ polynomials of a characteristic sequence of Σ_1 or in the first $m+1$ polynomials of a characteristic sequence of Σ_2.

Σ_{1m} and Σ_{2m} may be regarded as primes in the ring $\mathcal{F}[S, y_n^0, y_n^1, \ldots, y_n^{m+h}]$. The y_{ij} of S and the $y_{nk}, k < h$, constitute a parametric set for both Σ_{1m} and Σ_{2m}. Let s denote the number of indeterminates in this parametric set.

Our earlier result concerning polynomial ideals shows that there is a unique component \mathcal{M} of the manifold of $\{F, F_1, \ldots, F_m\}_0$, regarded as an ideal of $\mathcal{F}[S, y_n^0, y_n^1, \ldots, y_n^{m+h}]$, which contains the zero $y_{ij} = \alpha_{ij}$ of this ideal. The dimension of \mathcal{M} is s, for s corresponds to q of the earlier proof.

Now both Σ_{1m} and Σ_{2m} contain $\{F, F_1, \ldots, F_m\}_0$, while both have
the zero \(y_{ij} = \alpha_{ij} \). Hence their manifolds are in \(\mathcal{M} \). Since their manifolds are of dimension \(s \), however, they must coincide with \(\mathcal{M} \). Hence \(\Sigma_{1m} \) and \(\Sigma_{2m} \) are identical. But \(m \) was chosen so that \(\Sigma_{1m} \) contains a polynomial which is not in \(\Sigma_{2m} \), namely one of the first \(m+1 \) polynomials of a characteristic sequence of \(\Sigma_1 \). We have obtained a contradiction. This completes the proof of the theorem in the case that \(F \) is of equal order and effective order in \(y_n \).

If the order of \(F \) in \(y_n \) exceeds its effective order by \(d > 0 \), we replace each \(y_{nk} \) in \(F \) by \(z_{k-d} \), where \(z \) is a new indeterminate, and subscripts attached to \(z \) denote transforming. \(F \) goes into an irreducible polynomial \(\overline{F} \) which is of equal order and effective order in \(z \).

Evidently each component \(\mathcal{M} \) of the manifold of \(F \) corresponds to a unique component \(\mathcal{M} \) of the manifold of \(F \), and, conversely, each component of the manifold of \(F \) is obtained from a unique component of the manifold of \(\overline{F} \). The correspondence may be described as follows: each solution in \(\mathcal{M} \) is obtained from a solution in \(\mathcal{M} \) by leaving unchanged the elements assigned as values to \(y_1, \ldots, y_{n-1} \), and assigning to \(y_n \) an element whose \(d \)th transform is the element assigned as the value of \(z \) in \(\mathcal{M} \). This correspondence carries solutions common to two components of the manifold of \(F \) into solutions common to two components of the manifold of \(\overline{F} \). Solutions annulling the \(y_n \)-separant of \(F \) correspond to solutions annulling the \(z \)-separant of \(\overline{F} \).

The preceding proof shows that the theorem stated at the beginning of this note holds for \(\overline{F} \). The correspondence just described shows that its truth for \(\overline{F} \) implies its truth for \(F \). Hence it is true in general.

References

Rutgers University