ment a which suffice. Let \(F = B(t) \), \(B \) any field of characteristic two and \(t \) transcendental over \(B \). If \(f(t) \) denotes an arbitrary element of \(B(t) \), then define \(\alpha \) by \(f(t)\alpha = f(1/t) \), and let \(a = t + 1/t \).

Bibliography

The University of Oregon

ON THE CHARACTERISTIC FUNCTION OF A MATRIX PRODUCT

L. S. GODDARD

In a recent note [1], Roth has proved this result.

Theorem 1. Let \(A \) and \(B \) be \(n \times n \) matrices, with elements in a field \(F \), and let

\[
|xI - A| = a_0(x^2) - xa_1(x^2), \quad |xI - B| = b_0(x^2) - xb_1(x^2),
\]

where \(a_0, a_1, b_0, \) and \(b_1 \) are elements in the polynomial ring \(F[x] \). If the rank of \(A - B \) is not greater than unity, then

\[
|xI - AB| = (-)^n[a_0(x)b_0(x) - xa_1(x)b_1(x)].
\]

In his proof, which is essentially a verification, Roth derives some interesting but unnecessary information. Here I present a proof which is shorter, direct, and leads naturally to a more general result involving three matrices.

The essential step in my proof is the observation that if \(A \) is a nonsingular matrix and \(M \) is a matrix of rank 1, then

\[
|A + M| = |A| + \sum \Delta_i
\]

where \(\Delta_i \) is a sum of \(n \) determinants, each consisting of \(n - 1 \) columns of \(A \) and one column of \(M \). This follows from the fact that, \(M \) being of rank 1, any two columns of \(M \) are linearly dependent.

Received by the editors June 25, 1954.
For the case at hand we have
\[
\begin{vmatrix} xI - A \end{vmatrix} \begin{vmatrix} xI + B \end{vmatrix} = \begin{vmatrix} (xI - A)(xI + B) \end{vmatrix} = \begin{vmatrix} x^2I - AB - x(A - B) \end{vmatrix}
\]
and this determinant is equal to \(|x^2I - AB| \) if \(A - B \) has zero rank, while if \(A - B \) has rank 1, we have
\[
\begin{vmatrix} x^2I - AB - x(A - B) \end{vmatrix} = \begin{vmatrix} x^2I - AB \end{vmatrix} - x \sum \Delta_i,
\]
where each determinant \(\Delta_i \) has \(n - 1 \) columns chosen from \(x^2I - AB \) and one column from \(A - B \). It is observed that the terms of \(x \sum \Delta_i \) contain only odd powers of \(x \). Thus, in either case, \(|x^2I - AB| \) is equal to the even part of \(|xI - A| \begin{vmatrix} xI + B \end{vmatrix} \). Now
\[
\begin{vmatrix} xI - A \end{vmatrix} \begin{vmatrix} xI + B \end{vmatrix} = (-)^n[a_0(x^2) - xa_1(x^2)][b_0(x^2) + xb_1(x^2)],
\]
and the even part is \((-)^n[a_0(x^2)b_0(x^2) - x^2a_1(x^2)b_1(x^2)] \). Hence, writing \(y = x^2 \), we have
\[
\begin{vmatrix} yI - AB \end{vmatrix} = (-)^n[a_0(y)b_0(y) - ya_1(y)b_1(y)],
\]
and this is Roth's result.

Before extending this result we prove the

Lemma. If \(H \) and \(K \) are nonzero square matrices, such that \(xH - K \) is of rank 1, for \(x \) indeterminate over the field \(F \), then either

(i) \(H = uh', K = uk' \),

or

(ii) \(H = uh', K = vh' \),

where \(u, v, h, k \) are column vectors. Conversely, if \(H \) and \(K \) satisfy (i) and (ii) then \(xH - K \) is of rank 1.

Proof. Since \(xH - K \) is of rank 1 for all \(x \), it follows that \(H \) and \(K \) are each of rank 1 and hence are of the form
\[
H = uh', \quad K = vk',
\]
where \(u, v, h, k \) are column vectors. If we now equate to zero all the two-rowed minors of \(xH - K \), it is easily found that either \(u = v \) or \(h = k \), and this proves the lemma. The converse is obviously true.

From this lemma we proceed to

Theorem 2. Let \(A_1, A_2, \) and \(A_3 \) be \(n \times n \) matrices, such that
\[
\begin{vmatrix} xI - A_i \end{vmatrix} = a_{0i}(x^2) + xa_{1i}(x^2) + x^2a_{2i}(x^2) \quad (i = 1, 2, 3)
\]
and write \(H = A_1 + A_2 + A_3 \), \(K = A_1A_2 + A_1A_3 + A_2A_3 \). If \(H \) and \(K \) satisfy the lemma, or if \(H = K = 0 \), then
where $a_{ij} = a_{ij}(x)$.

Proof. We have

$$(xI - A_1)(xI - A_2)(xI - A_3) = x^3I - A_1A_2A_3 - x(xH - K).$$

If $H-K = 0$ we have

$$E = \begin{vmatrix} xI - A_1 & | & xI - A_2 & | & xI - A_3 \end{vmatrix} = \begin{vmatrix} x^3I - A_1A_2A_3 \end{vmatrix}.$$

If $xH - K$ is of rank 1 for all x, we have

$$E = \begin{vmatrix} x^3I - A_1A_2A_3 \end{vmatrix} - x \sum \Delta_i,$$

where each determinant Δ_i, since it consists of $n-1$ columns of $x^3I - A_1A_2A_3$ and 1 column of $xH - K$, expands into a polynomial each term of which involves x to the power $3k$ or $3k + 1$ for some integer k. Now $x \sum \Delta_i$ is a polynomial, each term of which involves x to a power $3k + 1$ or $3k + 2$. Thus, in either case, $\begin{vmatrix} x^3I - A_1A_2A_3 \end{vmatrix}$ is equal to the sum of the terms of $\begin{vmatrix} xI - A_1 \end{vmatrix} | \begin{vmatrix} xI - A_2 \end{vmatrix} | \begin{vmatrix} xI - A_3 \end{vmatrix}$ which involve powers of x^3. If we pick out these terms and replace x^3 by x the result follows.

Reference

King's College, Aberdeen