ON SYMMETRY IN CONVEX TOPOLOGICAL VECTOR SPACES

SETH WARNER AND ALEXANDER BLAIR

A convex topological vector space E is called symmetric if and only if the topology of the strong bidual of E induces on E its given topology. A barrel in E is a closed, convex, equilibrated, absorbing set (see [1] for the terminology); E is called barreled (French: espace tunnelé) if and only if every barrel is a neighborhood of 0. The properties of being symmetric and of being barreled are but the two extreme examples of a family of properties which we first wish to discuss. Second, we give a new counter-example in the theory of convex topological vector spaces. All spaces considered are assumed Hausdorff.

1. If E and F are convex topological vector spaces, E' the topological dual of E, Σ a class of bound subsets of E such that $\cup [S | S \in \Sigma] = E$, then E'' [respectively $L_2(E, F)$] denotes the vector space $E'\Sigma$ [respectively $L_2(E, F)$], the vector space of all continuous linear transformations from E into F with the (convex) topology of uniform convergence on all members of Σ. For the important special case where Σ is all bound subsets, we write “b” for “Σ”; for that where Σ is all one-point subsets of E, we write “s” for “Σ.” If E' is a total subspace of the algebraic dual of E, among all convex topologies on E yielding E' as dual there is a strongest, denoted by $\tau(E, E')$ [5, Theorem 5]; if a given convex topological vector space E with dual E' has the topology $\tau(E, E')$, it is called relatively strong.

If E is a convex topological vector space, E' its dual, Σ a class of bound subsets of E such that $\cup [S | S \in \Sigma] = E$, then E may be canonically identified (algebraically) with a subspace of the vector space (without topology) $(E')'$. Since $E \subset E'$ is equicontinuous if and only if the polar of L in E is a neighborhood of 0, it is easy to see that if Λ is a class of bound subsets of E' such that $\cup [L | L \in \Lambda] = E'$, then the topology induced on E by that of $(E')'$ is the given topology of E if and only if $(E')' = (E')_{\Omega}$, where Ω is the class of all equicontinuous subsets of E'. Hence, since every equicontinuous subset of E' is bound in E', the topology of $(E')'$ always induces on E a stronger (i.e., at least as strong) topology than the given topology.

Definition. E is Σ-symmetric if and only if the topology induced...
on E by that of $(E^{'})'$ is the given topology of E.

Theorem 1. If Λ is a class of bound subsets of E such that $\Lambda \supseteq \Sigma$ and if E is Σ-symmetric, then E is Λ-symmetric.

Proof. As the topology of E_Λ' is stronger than that of $E^{'},$ there are fewer bound sets in E_Λ' than in $E^{'},$ hence the topology of $(E')'$ is weaker than the topology of $(E^{'})'$, and hence must also induce on E its given topology.

Theorem 1 shows that among all the properties of being Σ-symmetrical, symmetry (i.e., b-symmetry) is the weakest. The strongest such property is s-symmetry (i.e., Σ-symmetry where Σ is the class of all one-point subsets of E). Theorem 2 shows that this property is precisely the property of being barrelled.

Theorem 2. Let E and F be convex topological vector spaces, F of nonzero dimension, Σ a class of bound subsets of E such that $\bigcup \{S \mid S \in \Sigma\} = E$. Then the following are equivalent: (1) E is Σ-symmetric. (2) The polars in E of all bound subsets of E_Σ' form a fundamental system of neighborhood of 0 for the topology of E. (3) Every bound subset of E_Σ' is equicontinuous. (4) Every bound subset of $L_\Sigma(E, F)$ is equicontinuous. (5) Every barrel in E absorbing all members of Σ is a neighborhood of 0. (6) E is relatively strong, and every convex bound subset of E_Σ' has compact closure in E_Σ'.

Proof. The equivalence of (1), (2), and (3) follows immediately from our discussion above. The equivalence of (3) and (5) follows from the fact that a set is bound in E_Σ' if and only if its polar in E is a barrel absorbing all members of Σ. Proposition 2 of [3] asserts the equivalence of (5) and (6) for the special case of barrelled spaces, and Theorem 1 of [3] asserts that (5) implies (4) for barrelled spaces. In both cases an obvious modification of the proof yields the desired result. It remains to show that (4) implies (3). Let K_λ be a one-dimensional subspace of F, K the scalar field. $\phi : \lambda K \rightarrow \lambda$ is a topological isomorphism from K_λ onto K. Let $L = \{u \in L(E, F) \mid u(E) \subseteq K_\lambda\}$ with the topology induced from $L_\Sigma(E, F)$. It is immediate that $\psi : u \rightarrow \phi \circ u$ is a topological isomorphism from L onto E_Σ'. Let B be bound in E_Σ', V a neighborhood of 0 in K. Then $V_\lambda = W \cap K_\lambda$ where W is a neighborhood of 0 in F. V_λ is bound in L, hence in $L_\Sigma(E, F)$, and hence is an equicontinuous subset of $L(E, F)$. Therefore there exists a neighborhood W' of 0 in E such that if $u \in \psi^{-1}(B)$ then $u(W') \subseteq W$ and hence, as $u \subseteq L$, $u(W') \subseteq W \cap K_\lambda = V_\lambda$. But then if $v \in B$, $\phi^{-1} \circ v \in \psi^{-1}(B)$ so $\phi^{-1}(v(W')) \subseteq V_\lambda$, i.e., $v(W') \subseteq \phi^{-1}(V_\lambda) = V$. Hence B is equicontinuous.
Corollary 1. A necessary and sufficient condition that E be barrelled is that E be Σ-symmetric and that every bound subset of E' be bound in E''.

"Sequentially complete" (i.e., all Cauchy sequences converge) can replace "complete" in Theorem 2 of [3]; hence

Corollary 2. If every $S \subseteq \Sigma$ is sequentially complete, then E is barrelled if and only if E is Σ-symmetric.

It is obvious from Theorem 2 that for every theorem about barrelled spaces there is an analogue for Σ-symmetric spaces. We mention in particular the abstract version of the Banach-Steinhaus theorem, the proof of which for barrelled spaces is found in [2] or in Corollaries 1 and 2 of Theorem 1 of [3].

Theorem 3. Let E be Σ-symmetric, Φ a filter on $\mathcal{F}(E, F)$, the vector space of all functions from E into F, $u_0 \in \mathcal{F}(E, F)$. Then $u_0 \in \mathcal{L}(E, F)$ and Φ converges to u_0 in the topology of uniform convergence on all precompact subsets of E under any of the following additional assumptions:
(1) Φ contains a bound subset of $\mathcal{L}_\infty(E, F)$ and Φ converges pointwise to u_0; (2) F is quasi-complete (i.e., every closed, bound subset of F is complete), Φ contains a bound subset of $\mathcal{L}_\infty(E, F)$, and Φ converges pointwise to u_0 on a total subset of E.

2. E is called semi-reflexive if $(E')' = E$ (algebraically). E is called boundedly closed if every bound linear functional on E is continuous. By Theorem 2, a symmetric space is relatively strong. We show the converse is false by giving an example of a semi-reflexive, relatively strong space F whose strong dual F' is a Banach space, but which is neither symmetric nor boundedly closed.

Let E be a nonreflexive Banach space (e.g., L^1 of the unit interval). E may be regarded as a total subspace of the algebraic dual of E'; we let F be the vector space E' together with the convex topology $\tau(E', E)$. F is thus by definition relatively strong. We show $F' = E$ (algebraically and topologically). Since E is barrelled, the classes of all bound subsets of E', of all bound subsets of E', and of all equicontinuous subsets of E' are identical (Theorem 2); this class is also identical with the class of all bound subsets of F, since E, the topological dual of F, is also the topological dual of E' [4, Theorem 2], and hence F and E' have the same bound subsets [5, Theorem 7]. V is a neighborhood of 0 in F' if and only if V contains the polar of a bound subset of F; V is a neighborhood of 0 in E if and only if V contains the polar of an equicontinuous subset of E'; hence E is
topologically and algebraically identical with F'. Thus $(F')' = E' = F$, so F is semi-reflexive. As E is not reflexive, $(E')'$ strictly contains E. The topology of $(F')_b' = E_b'$ is thus strictly stronger than that of F since F and $(F')_b'$ have different topological duals; hence F is not symmetric. Also, as the bound subsets of F and of E_b' coincide, every linear functional in $(E')'$ is bound on F, but as $F' = E = (E_b')'$, there exist bound linear functionals on F which are not continuous. Hence F is not boundedly closed.

Bibliography

2. ———, Espaces vectoriels topologiques, Chaps. III–V, to be published soon.

Harvard University