A NOTE ON A THEOREM OF K. G. WOLFSON

L. J. HEIDER

1. In [3] K. G. Wolfson proves the following:

Theorem. A commutative B^*-algebra K containing an identity e (with $\|k^*k\| = \|k\|^2$ for all $k \in K$ and $\|e\| = 1$) is isomorphic (in a norm and $*$ preserving manner) to an algebra $B(X)$ of all bounded complex-valued functions on an essentially unique set X if and only if:

1. Every nonzero closed ideal of K contains a minimal ideal;
2. The sum of two annulets is an annulet.

An annulet is here understood to be an ideal I of K with which is associated a subset $G \subseteq K$ such that

$$I = \{k \in K \mid k \cdot g = 0 \text{ for all } g \in G\}.$$

The two characterizing traits therein presented neither are self-evident in $B(X)$ nor touch upon the projections and Gelfand-Nemmarck [1; 2] continuous function representations so commonly used in the analysis of B^*-algebras. It is with this in mind that the following characterizations are offered:

Theorem 1. A necessary and sufficient condition that a B^*-algebra $C(X)$ of all continuous complex-valued functions on a compact Hausdorff space X be isomorphic (in a norm and $*$ preserving manner) to a B^*-algebra $B(X_0)$ of all bounded complex-valued functions on a set X_0 (essentially unique) is that the compact space X contain a dense subset X_0 of points each of which is an open-closed subset of X and such that each nonempty subset of points in X_0 is contained in an open-closed subset of X which includes of X_0 just that subset.

Proof. Sufficiency. Assume that the compact Hausdorff space X contains a subset X_0 as described above. Viewing X_0 simply as a set, form the B^*-algebra $B(X_0)$ and consider the map $C(X) \to B(X_0)$ under which c in $C(X)$ becomes \bar{c} in $B(X_0)$ with $\bar{c}(x_0) = c(x_0)$ for all x_0 in X_0. This map is linear and $*$ preserving. Since X_0 is dense in X the map is norm preserving and thus 1-1. Finally this map is onto: thus let $b \in B(X_0)$ be arbitrary and assume that its range as x_0 varies over X_0 falls in the interior of a right-open square of side $2M$ about the origin in the complex plane. For each positive integer n the de-
composition of this square into $2^n \times 2^n$ equal right-open squares determines a division of X_0 into $2^n \times 2^n$ disjoint subsets (some perhaps empty) and thus a decomposition of X into $2^n \times 2^n$ disjoint open-closed subsets (some perhaps the empty set) X_i, $i = 1, \ldots, 2^n \times 2^n$. If λ_i is the center of the ith of the above squares and $\chi(X_i)$ is the characteristic function of the corresponding open-closed subset of X, then

$$c_n(x) = \sum_{i=1}^{2^n \times 2^n} \lambda_i \cdot \chi(X_i) [x]$$

is an element of $C(X)$ such that $|\tilde{c}_n(x_0) - b(x_0)| \leq M/n^{1/2}$ for all x_0 in X_0. Thus $\{\tilde{c}_n\}$ is a Cauchy sequence in $B(X_0)$ and, since norms are preserved, $\{c_n\}$ is a Cauchy sequence in $C(X)$ which converges point-wise (and uniformly) to an element $c \in C(X)$. Finally, for each x_0 in X_0:

$$c(x_0) = \lim_{n} c_n(x_0) = \lim_{n} \tilde{c}_n(x_0) = b(x_0).$$

Necessity. Assume now that $C(X)$ is isomorphic as a B^*-algebra to some $B(\overline{X}_0)$. In $B(\overline{X}_0)$ denote by \tilde{e}_{x_0}, $\tilde{x}_0 \in \overline{X}_0$, the system of all characteristic functions of a single point $\tilde{x}_0 \in \overline{X}_0$ and by \tilde{e}_A, $\tilde{A} \in S(\overline{X}_0)$, the system of all characteristic functions on the various subsets $\tilde{A} \in S(\overline{X}_0)$ of \overline{X}_0. Denote by e_{x_0} and e_A the elements of $C(X)$ which correspond under the assumed isomorphism to \tilde{e}_{x_0} and \tilde{e}_A in $B(\overline{X}_0)$. It is clear that e_{x_0} and e_A^n are idempotent, hermitian in $C(X)$ and thus are the characteristic functions of open-closed subsets of X. For each $c \in C(X)$ and each e_{x_0}, $c \cdot e_{x_0} = \lambda e_{x_0}$ where λ is a complex scalar, since the corresponding multiplicative property clearly holds in $B(\overline{X}_0)$. From this it follows, by use of the theorem that for any open set O in compact X and any point x_0 in O there is an element c in $C(X)$ with $c(x_0) = 1$ and $c(x) = 0$ for $x \in O$, that e_{x_0} is the characteristic function of a single point $x_0 \in X$. Similarly for each $c \neq 0$ in $C(X)$ there exists at least one e_{x_0} in $C(X)$ such that $c \cdot e_{x_0} \neq 0$ since the corresponding property holds in $B(\overline{X}_0)$. From this it follows by the same theorem that the points x_0 determined by the e_{x_0} are dense in X. Finally for any collection of the x_0 in X the open-closed subset A of X determined by the idempotent, hermitian element e_A of $C(X)$ corresponding to the element e_A of $B(\overline{X}_0)$, where A contains all and only the corresponding x_0, itself contains all and only the given x_0 since $e_{x_0} \cdot e_A = e_{x_0}$ if and only if $\tilde{e}_{x_0} \cdot \tilde{e}_A = \tilde{e}_{x_0}$.

Since a dense subset in X of points that are open-closed subsets necessarily includes all such points, the essential identity of the sets \overline{X}_0, X_0 is clear.

2. Let K be an arbitrary commutative B^*-algebra with unit e, $\|e\| = 1$, and with $\|k \cdot k^*\| = \|k\|^2$ for all $k \in K$. In the collection of all projections (idempotent, hermitian, nonzero elements) of K distin-
guish the collection (possibly empty) $e_{x_0}, x_0 \in X_0$, of projections such that for each $k \in K$ and each $e_{x_0}, x_0 \in X_0$, there exists a complex scalar λ such that $k \cdot e_{x_0} = \lambda e_{x_0}$. Such projections may be called minimal projections. Here the indexing set X_0 is assumed so chosen that $x_0 \neq y_0$ in X_0 implies $e_{x_0} \neq e_{y_0}$ in K.

Theorem 2. A necessary and sufficient condition that a commutative B^*-algebra K with identity e and with $\|k^* \cdot k\| = \|k\|^2$ for all k be isomorphic (in a norm and * preserving manner) to a B^*-algebra $B(\overline{X}_0)$ of all complex-valued functions on a set \overline{X}_0 is that the subset of all minimal projections $e_{x_0}, x_0 \in X_0$, of K be such that:

1. For each $k \neq 0$ in K there exists at least one minimal projection $e_{x_0}, x_0 \in X_0$, such that $k \cdot e_{x_0} \neq 0$.

2. For each subcollection $A \subseteq X_0$ of minimal projections there exists in K a projection e_A such that $e_A \cdot e_{x_0} = e_{x_0}$ for $x_0 \in A$ and $e_A \cdot e_{x_0} = 0$ for $x_0 \notin A$.

When these conditions are satisfied the indexing set X_0 may be identified with the set \overline{X}_0.

Proof. Necessity. Assume K isomorphic to $B(\overline{X}_0)$. It is then evident that the minimal projections $e_{x_0}, x_0 \in X_0$, of K correspond in a 1-1, onto manner to the characteristic functions in $B(\overline{X}_0)$ of single points \hat{x}_0 of \overline{X}_0, that the indexing set X_0 may be identified with the set \overline{X}_0, and that the two conditions given above are satisfied with the e_A of condition (2) being the inverse images in K of the characteristic functions in $B(\overline{X}_0)$ of various subsets A_0 of \overline{X}_0.

Sufficiency. Assume that the collection (now nonempty) $e_{x_0}, x_0 \in X_0$, of minimal projections in K satisfies the stated conditions. By the Gelfand-Neumark theory [1; 2] K is isomorphic (in a norm and * preserving manner) to an algebra $C(\overline{X})$ of all continuous complex-valued functions on a compact Hausdorff space \overline{X}. Let \overline{X}_0 denote the set of all points \hat{x}_0 which are open-closed sets in \overline{X}. Using again the theorem that for each point \hat{y} in an open set O of \overline{X} there exists an element c of $C(\overline{X})$ with $c(\hat{y}) = 1$ and $c(\hat{x}) = 0$ for $\hat{x} \in O$, it is clear that the minimal projections $e_{x_0}, x_0 \in X_0$, of K correspond in a 1-1 onto manner to the collection $e_{x_0}, \hat{x}_0 \in \overline{X}_0$, of all characteristic functions on single point, open-closed sets of \overline{X}, that X_0 and \overline{X}_0 may be identified, that (by condition 1) the points of \overline{X}_0 are dense in \overline{X}, and that (by condition (2)) each nonempty subset of points in \overline{X}_0 is contained in an open-closed subset of \overline{X} which contains all and only those points of \overline{X}_0 that are in the given subset. It follows then by Theorem 1 that $C(\overline{X})$ and hence K is isomorphic to a $B(X_0^*)$ wherein the set X_0^* may be identified with \overline{X}_0 and thus with X_0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
A NOTE ON UNSTABLE HOMEOMORPHISMS

ROBERT F. WILLIAMS

In [1] W. R. Utz introduced the concept of an unstable homeomorphism and raised the question of whether there exists an unstable homeomorphism of a compact continuum onto itself. In this note an example of such an homeomorphism will be given.

Let C denote the complex unit circle and for each $z \in C$, let $g(z) = z^2$. Then $g: C \to C$ determines an inverse limit space $\Sigma_2 = \{(a_0, a_1, a_2, \cdots) \mid \text{for each non-negative integer } i, a_i \in C \text{ and } g(a_{i+1}) = a_i\}$. For $a, b \in \Sigma_2$, the function $\rho(a, b) = \sum_{i=0}^{\infty} \frac{|a_i - b_i|}{2^i}$ is a metric for Σ_2; Σ_2 is familiar as the “two-solenoid,” and is a compact, indecomposable continuum. Define $f: \Sigma_2 \to \Sigma_2$ as follows: for each $a = (a_0, a_1, \cdots) \in \Sigma_2$, let $f(a) = [g(a_0), g(a_1), \cdots]$. Then $f(a) = (a_0^2, a_1, \cdots) = (a_0^2, a_0, a_1, \cdots), f^{-1}(a) = (a_1, a_2, a_3, \cdots)$, and f is a homeomorphism of Σ_2 onto Σ_2.

To show that f is unstable, suppose that $a = (a_0, a_1, \cdots)$ and $b = (b_0, b_1, \cdots)$ are distinct points of Σ_2. Consider, as Case 1, that $a_0 \neq b_0$. Let $e^{i\theta} = a_0, e^{i\phi} = b_0$, where $0 \leq \theta, \phi < 2\pi$. Then there exists a non-negative integer n such that the angle between the terminal rays of $2^n\theta$ and $2^n\phi$ is greater than $\pi/2$. Then $\rho[f^n(a), f^n(b)] \geq |a_0^{2^n} - b_0^{2^n}| = |e^{in\theta} - e^{in\phi}| > 1$.

Case 2: for some integer $n > 0$, $a_0 \neq b_n$, but $a_i = b_i$, for $0 \leq i < n$. Then $f^{-n}(a) = (a_n, a_{n+1}, a_{n+2}, \cdots, f^{-n}(b) = (b_n, b_{n+1}, b_{n+2}, \cdots)$, and there-

Presented to the Society, November 26, 1954; received by the editors June 25, 1954.

1 Research under NSF-G358, National Science Foundation.

2 A homeomorphism f of a compact metric space X onto X is said to be unstable provided there exists a fixed positive number δ, such that if x and y are distinct points of X, then there exists an integer n, such that $\rho[f^n(x), f^n(y)]$ is greater than δ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use