A NOTE ON A THEOREM OF K. G. WOLFSON

L. J. HEIDER

1. In [3] K. G. Wolfson proves the following:

Theorem. A commutative B*-algebra \(K \) containing an identity \(e \) (with \(\| k^* \cdot k \| = \| k \|^2 \) for all \(k \in K \) and \(\| e \| = 1 \)) is isomorphic (in a norm and * preserving manner) to an algebra \(B(X) \) of all bounded complex-valued functions on an essentially unique set \(X \) if and only if:

1. Every nonzero closed ideal of \(K \) contains a minimal ideal;
2. The sum of two annulets is an annulet.

An annulet is here understood to be an ideal \(I \) of \(K \) with which is associated a subset \(G \subseteq K \) such that

\[
I = \{ k \in K \mid k \cdot g = 0 \text{ for all } g \in G \}.
\]

The two characterizing traits therein presented neither are self-evident in \(B(X) \) nor touch upon the projections and Gelfand-Neumark [1; 2] continuous function representations so commonly used in the analysis of B*-algebras. It is with this in mind that the following characterizations are offered:

Theorem 1. A necessary and sufficient condition that a B*-algebra \(C(X) \) of all continuous complex-valued functions on a compact Hausdorff space \(X \) be isomorphic (in a norm and * preserving manner) to a B*-algebra \(B(X_0) \) of all bounded complex-valued functions on a set \(X_0 \) (essentially unique) is that the compact space \(X \) contain a dense subset \(X_0 \) of points each of which is an open-closed subset of \(X \) and such that each nonempty subset of points in \(X_0 \) is contained in an open-closed subset of \(X \) which includes of \(X_0 \) just that subset.

Proof. Sufficiency. Assume that the compact Hausdorff space \(X \) contains a subset \(X_0 \) as described above. Viewing \(X_0 \) simply as a set, form the B*-algebra \(B(X_0) \) and consider the map \(C(X) \rightarrow B(X_0) \) under which \(c \) in \(C(X) \) becomes \(\bar{c} \) in \(B(X_0) \) with \(\bar{c}(x_0) = c(x_0) \) for all \(x_0 \) in \(X_0 \). This map is linear and * preserving. Since \(X_0 \) is dense in \(X \) the map is norm preserving and thus 1-1. Finally this map is onto: thus let \(b \subseteq B(X_0) \) be arbitrary and assume that its range as \(x_0 \) varies over \(X_0 \) falls in the interior of a right-open square of side \(2M \) about the origin in the complex plane. For each positive integer \(n \) the de-
composition of this square into $2^n \times 2^n$ equal right-open squares determines a division of X_0 into $2^n \times 2^n$ disjoint subsets (some perhaps empty) and thus a decomposition of X into $2^n \times 2^n$ disjoint open-closed subsets (some perhaps the empty set) X_i, $i = 1, \ldots, 2^n \times 2^n$. If λ_i is the center of the ith of the above squares and $\chi(X_i)$ is the characteristic function of the corresponding open-closed subset of X, then $c_n(x) = \sum_{i=1}^{2^n \times 2^n} \lambda_i \cdot \chi(X_i)[x]$ is an element of $C(X)$ such that $|\tilde{c}_n(x_0) - b(x_0)| \leq M/n^{2^{1/2}}$ for all $x_0 \in X_0$. Thus $\{\tilde{c}_n\}$ is a Cauchy sequence in $B(X_0)$ and, since norms are preserved, $\{c_n\}$ is a Cauchy sequence in $C(X)$ which converges point-wise (and uniformly) to an element $c \in C(X)$. Finally, for each $x_0 \in X_0$:

$$c(x_0) = \lim_{n} c_n(x_0) = \lim_{n} \tilde{c}_n(x_0) = b(x_0).$$

Necessity. Assume now that $C(X)$ is isomorphic as a B^*-algebra to some $B(\overline{X}_0)$. In $B(\overline{X}_0)$ denote by $\tilde{e}_{x_0}, \tilde{x}_0 \in \overline{X}_0$, the system of all characteristic functions of a single point $\tilde{x}_0 \in \overline{X}_0$ and by $\tilde{\alpha}, \tilde{\alpha} \in S(\overline{X}_0)$, the system of all characteristic functions on the various subsets $\tilde{\alpha} \in S(\overline{X}_0)$ of \overline{X}_0. Denote by $e_{\tilde{x}_0}$ and $e_{\tilde{\alpha}}$ the elements of $C(X)$ which correspond under the assumed isomorphism to \tilde{e}_{x_0} and $\tilde{\alpha}$ in $B(\overline{X}_0)$. It is clear that $e_{\tilde{x}_0}$ and $e_{\tilde{\alpha}}$ are idempotent, hermitian in $C(X)$ and thus are the characteristic functions of open-closed subsets of X. For each $c \in C(X)$ and each $e_{\tilde{x}_0}$, $c \cdot e_{\tilde{x}_0} = \lambda e_{\tilde{x}_0}$ where λ is a complex scalar, since the corresponding multiplicative property clearly holds in $B(\overline{X}_0)$. From this it follows, by use of the theorem that for any open set O in compact X and any point x_0 in O there is an element c in $C(X)$ with $c(x_0) = 1$ and $c(x) = 0$ for $x \in O$, that $e_{\tilde{x}_0}$ is the characteristic function of a single point $x_0 \in X$. Similarly for each $c \neq 0$ in $C(X)$ there exists at least one $e_{\tilde{x}_0}$ in $C(X)$ such that $c \cdot e_{\tilde{x}_0} \neq 0$ since the corresponding property holds in $B(\overline{X}_0)$. From this it follows by the same theorem that the points x_0 determined by the $e_{\tilde{x}_0}$ are dense in X. Finally for any collection of the x_0 in X the open-closed subset A of X determined by the idempotent, hermitian element $e_{\tilde{\alpha}}$ of $C(X)$ corresponding to the element $\tilde{e}_{\tilde{\alpha}}$ of $B(\overline{X}_0)$, where $\tilde{\alpha}$ contains all and only the corresponding \tilde{x}_0, itself contains all and only the given x_0 since $e_{\tilde{\alpha}} \cdot e_{\tilde{\alpha}} = e_{\tilde{x}_0}$ if and only if $\tilde{e}_{\tilde{x}_0} \cdot \tilde{e}_{\tilde{\alpha}} = \tilde{e}_{\tilde{x}_0}$.

Since a dense subset in X of points that are open-closed subsets necessarily includes all such points, the essential identity of the sets \overline{X}_0, X_0 is clear.

2. Let K be an arbitrary commutative B^*-algebra with unit e, $\|e\| = 1$, and with $\|k^* \cdot k\| = \|k\|^2$ for all $k \in K$. In the collection of all projections (idempotent, hermitian, nonzero elements) of K distin-
guish the collection (possibly empty) $e_{x_0}, x_0 \in X_0$, of projections such that for each $k \in K$ and each $e_{x_0}, x_0 \in X_0$, there exists a complex scalar λ such that $k \cdot e_{x_0} = \lambda e_{x_0}$. Such projections may be called minimal projections. Here the indexing set X_0 is assumed so chosen that $x_0 \neq y_0$ in X_0 implies $e_{x_0} \neq e_{y_0}$ in K.

Theorem 2. A necessary and sufficient condition that a commutative B^*-algebra K with identity e and with $\|k \cdot k^*\| = \|k\|^2$ for all k be isomorphic (in a norm and $*$ preserving manner) to a B^*-algebra $B(\overline{X}_0)$ of all complex-valued functions on a set \overline{X}_0 is that the subset of all minimal projections $e_{x_0}, x_0 \in X_0$, of K be such that:

1. For each $k \neq 0$ in K there exists at least one minimal projection $e_{x_0}, x_0 \in X_0$, such that $k \cdot e_{x_0} \neq 0$.

2. For each subcollection $\mathcal{A} \subseteq X_0$ of minimal projections there exists in K a projection $e_{\mathcal{A}}$ such that $e_{\mathcal{A}} \cdot e_{x_0} = e_{x_0}$ for $x_0 \in \mathcal{A}$ and $e_{\mathcal{A}} \cdot e_{x_0} = 0$ for $x_0 \not\in \mathcal{A}$.

When these conditions are satisfied the indexing set X_0 may be identified with the set \overline{X}_0.

Proof. *Necessity.* Assume K isomorphic to $B(\overline{X}_0)$. It is then evident that the minimal projections $e_{x_0}, x_0 \in X_0$, of K correspond in a 1-1, onto manner to the characteristic functions in $B(\overline{X}_0)$ of single points \bar{x}_0 of \overline{X}_0, that the indexing set X_0 may be identified with the set \overline{X}_0, and that the two conditions given above are satisfied with the $e_{\mathcal{A}}$ of condition (2) being the inverse images in K of the characteristic functions in $B(\overline{X}_0)$ of various subsets \mathcal{A}_0 of \overline{X}_0.

* Sufficiency. Assume that the collection (now nonempty) $e_{x_0}, x_0 \in X_0$, of minimal projections in K satisfies the stated conditions. By the Gelfand-Neumark theory [1; 2] K is isomorphic (in a norm and $*$ preserving manner) to an algebra $C(\overline{X})$ of all continuous complex-valued functions on a compact Hausdorff space \overline{X}. Let \overline{X}_0 denote the set of all points \bar{x}_0 which are open-closed sets in \overline{X}. Using again the theorem that for each point \bar{y} in an open set \overline{O} of \overline{X} there exists an element c of $C(\overline{X})$ with $c(\bar{y}) = 1$ and $c(\bar{x}) = 0$ for $\bar{x} \in \overline{O}$, it is clear that the minimal projections $e_{x_0}, x_0 \in X_0$, of K correspond in a 1-1 onto manner to the collection $e_{x_0}, \bar{x}_0 \in \overline{X}_0$, of all characteristic functions on single point, open-closed sets of \overline{X}, that X_0 and \overline{X}_0 may be identified, that (by condition 1) the points of \overline{X}_0 are dense in \overline{X}, and that (by condition (2)) each nonempty subset of points in \overline{X}_0 is contained in an open-closed subset of \overline{X} which contains all and only those points of \overline{X}_0 that are in the given subset. It follows then by Theorem 1 that $C(\overline{X})$ and hence K is isomorphic to a $B(X_0^*)$ wherein the set X_0^* may be identified with \overline{X}_0 and thus with X_0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
A NOTE ON UNSTABLE HOMEOMORPHISMS¹

ROBERT F. WILLIAMS

In [1] W. R. Utz introduced the concept of an unstable² homeomorphism and raised the question of whether there exists an unstable homeomorphism of a compact continuum onto itself. In this note an example of such an homeomorphism will be given.

Let C denote the complex unit circle and for each $z \in C$, let $g(z) = z^2$. Then $g : C$ onto C determines an inverse limit space $Σ_2 = \{(a_0, a_1, a_2, \cdots)\}$ for each non-negative integer i, $a_i \in C$ and $g(a_{i+1}) = a_i$. For $a, b \in Σ_2$, the function $ρ(a, b) = \sum_{i=0}^{\infty} |a_i - b_i| / 2^i$ is a metric for $Σ_2$; $Σ_2$ is familiar as the “two-solenoid,” and is a compact, indecomposable continuum. Define $f : Σ_2$ onto $Σ_2$ as follows: for each $a = (a_0, a_1, \cdots) \in Σ_2$, let $f(a) = [g(a_0), g(a_1), \cdots]$. Then $f(a) = (a_0^2, a_1^2, \cdots) = (a_0^2, a_0, a_1, \cdots)$, $f^{-1}(a) = (a_1, a_2, a_3, \cdots)$, and f is a homeomorphism of $Σ_2$ onto $Σ_2$.

To show that f is unstable, suppose that $a = (a_0, a_1, \cdots)$ and $b = (b_0, b_1, \cdots)$ are distinct points of $Σ_2$. Consider, as Case 1, that $a_0 \neq b_0$. Let $e^{iθ} = a_0$, $e^{iφ} = b_0$, where $0 ≤ θ, φ < 2π$. Then there exists a non-negative integer n such that the angle between the terminal rays of $2^nθ$ and $2^nφ$ is greater than $π/2$. Then $ρ[f^n(a), f^n(b)] ≥ |a_0^{2^n} - b_0^{2^n}| = |e^{i2^nθ} - e^{i2^nφ}| > 1$.

Case 2: for some integer $n > 0$, $a_n \neq b_n$, but $a_i = b_i$, for $0 ≤ i < n$. Then $f^{-n}(a) = (a_n, a_{n+1}, a_{n+2}, \cdots)$, $f^{-n}(b) = (b_n, b_{n+1}, b_{n+2}, \cdots)$, and there-

¹ Research under NSF-G358, National Science Foundation.
² A homeomorphism f of a compact metric space X onto X is said to be unstable provided there exists a fixed positive number $δ$, such that if x and y are distinct points of X, then there exists an integer n, such that $ρ[f^n(x), f^n(y)]$ is greater than $δ$. Presented to the Society, November 26, 1954; received by the editors June 25, 1954.