A BASIC SET OF HOMOGENEOUS HARMONIC POLYNOMIALS IN k VARIABLES

E. P. MILES, JR. AND ERNEST WILLIAMS

1. The authors present basic sets of:
 (a) homogeneous harmonic polynomials of degree \(n \) in \(k \) variables, \(k \geq 3 \);
 (b) associated polynomial solutions of the wave equation, and
 (c) analogous solutions for \(\sum_{j=1}^k \left(\partial^s u / \partial x_j^s \right) = 0, s = 3, 4, \ldots \).

2. For any set of non-negative integers \((b_j) \) such that \(b_1 \leq 1 \) and \(\sum_{j=1}^k b_j = n \), let

\[
H^n_{b_1 b_2 \cdots b_k}(x_1, x_2, \ldots, x_k)
\]

\[
= \sum (-1)^{[a_1/2]} \frac{n!}{\prod_{j=1}^k a_j!} \frac{\lfloor a_1 \rfloor!}{\prod_{j=2}^k \left(\frac{b_j - a_j}{2} \right)!} \prod_{j=1}^k x_j^{a_j}
\]

where the summation is extended over all \((a_j) \) such that:

1. \(a_j \equiv b_j \mod 2, j = 1, 2, \ldots, k, \)
2. \(\sum_{j=1}^k a_j = n, \)
3. \(a_j \leq b_j, j = 2, 3, \ldots, k. \)

The polynomials (1) form a basic set of homogeneous harmonic polynomials in \(k \) variables. The proof is given in three parts.

A. The polynomials (1) are linearly independent since each contains exactly one different nonvanishing term of the monomials \(x_1^{a_1}x_2^{a_2} \cdots x_k^{a_k}, \sum_{j=1}^k a_j = n, a_1 \leq 1. \)

Moreover, since the number of terms in \((\sum_{j=1}^k x_j)^n \) is

\[
\binom{n + k - 1}{k - 1},
\]

the total number of monomials of type \(x_2^{a_2}x_3^{a_3} \cdots x_k^{a_k}, \sum_{j=2}^k a_j = n, \) and of type \(x_1x_2^{a_2}x_3^{a_3} \cdots x_k^{a_k}, \sum_{j=2}^k a_j = n - 1, \) is

\[
\binom{n + k - 2}{k - 2} + \binom{n + k - 3}{k - 2} = \binom{n + k - 3}{k - 3} \left(\frac{2n}{k - 2} + 1 \right).
\]

Thus the polynomials (1) are

Presented to the Society, November 26, 1954; received by the editors March 22, 1954 and, in revised form, June 10, 1954.

191
\[\binom{n + k - 3}{k - 3} \left(\frac{2n}{k - 2} + 1 \right) \]

in number.

B. They are harmonic. Let \(c_j, j = 1, \cdots, k \), be such that

1. \(c_j \equiv b \mod 2 \),
2. \(c_j \leq b_j, j = 2, 3, \cdots, k \), and
3. \(\sum_{j=1}^{k} c_j = n - 2 \).

The coefficient \(B_{c_1, \cdots, c_k} \) of \(\prod_{j=1}^{k} x_j^{c_j} \) in \(\nabla^2 H_{b_1, \cdots, b_k} (x_1, \cdots, x_k) \) is given by

\[
B_{c_1, \cdots, c_k} = (-1)^{\left\lfloor c_1/2 \right\rfloor + 1} \frac{n!}{\prod_{j=1}^{k} c_j!} \cdot \left[\sum_{j=2}^{k} \frac{c_1}{2} \left(\frac{b_j - c_i}{2} \right) ! \right] - \frac{n! \left\lfloor \frac{c_1}{2} \right\rfloor !}{\prod_{j=1}^{k} \left(\frac{b_j - c_i}{2} \right) !} \cdot \left[\sum_{j=2}^{k} \frac{b_j}{2} + \frac{1}{2} \sum_{j=2}^{k} c_j \right] \]

\[
= (-1)^{\left\lfloor c_1/2 \right\rfloor + 1} \frac{n! \left\lfloor \frac{c_1}{2} \right\rfloor !}{\prod_{j=1}^{k} c_j! \prod_{j=2}^{k} \left(\frac{b_j - c_i}{2} \right) !} \cdot \left[\frac{c_1}{2} + 1 - \frac{1}{2} \sum_{j=2}^{k} b_j + \frac{1}{2} \sum_{j=2}^{k} c_j \right] \]

\[
= (-1)^{\left\lfloor c_1/2 \right\rfloor + 1} \frac{n! \left\lfloor \frac{c_1}{2} \right\rfloor !}{\prod_{j=1}^{k} c_j! \prod_{j=2}^{k} \left(\frac{b_j - c_i}{2} \right) !} \cdot \left[\frac{c_1}{2} + 1 - \frac{1}{2} (n - b_1) + \frac{1}{2} (n - 2 - c_1) \right] \]

\[
= (-1)^{\left\lfloor c_1/2 \right\rfloor + 1} \frac{n! \left\lfloor \frac{c_1}{2} \right\rfloor !}{\prod_{j=1}^{k} c_j! \prod_{j=2}^{k} \left(\frac{b_j - c_i}{2} \right) !} \cdot \left[\frac{c_1}{2} - \frac{1}{2} (c_1 - b_1) \right] \equiv 0. \]
C. For a general homogeneous polynomial H^k_n of degree n in k variables the vanishing of the Laplacian $\nabla^2 H^k_n$ provides
\[
\binom{n+k-3}{k-1} \text{ equations on the } \binom{n+k-1}{k-1} \text{ coefficients}
\]
of H^k_n. Thus the number of linearly independent homogeneous harmonic polynomials of degree n in k variables is
\[
\binom{n+k-1}{k-1} - \binom{n+k-3}{k-1} = \binom{n+k-3}{k-3} \left(\frac{2n}{k-2} + 1 \right),
\]
which is the number of polynomials (1).

3. It is worth noting that the polynomials obtained from (1) by deleting the factor $(-1)^{l_1/2}$ are solutions of the generalized wave equation $\sum_{j=2}^{k} \partial^2 u/\partial x_j^2 = \partial^2 u/\partial x_1^2$, which form a basic set for that equation.

4. Further, for each set of k non-negative integers b_j such that
\[
\sum_{j=1}^{k} b_j = n, \quad b_j \leq s-1,
\]
the polynomials
\[
H_{b_1, b_2, \cdots, b_k}(x_1, x_2, \cdots, x_k)
\]
\[
= \sum (-1)^{[a_1/s]} \frac{n!}{\prod_{j=1}^{k} a_j!} \frac{[a_1/s]!}{\prod_{j=2}^{k} (b_j - a_j)!} \prod_{j=1}^{k} x_j^{a_j},
\]
where the summation extends over all a_j such that
(1) $a_j \equiv b_j \text{ mod } s, \quad j = 1, 2, \cdots, k$,
(2) $\sum_{j=1}^{k} a_j = n$,
(3) $a_j \leq b_j, \quad j = 2, 3, \cdots, k$,
provide a basic set of solutions for
\[
\sum_{j=1}^{k} \frac{\partial^s u}{\partial x_j^s} = 0.
\]

5. Of particular interest for harmonic polynomials is the case $k = 3$. Whittaker\(^1\) has obtained the general solution of $\nabla^2 U(x, y, z) = 0$ by means of an integral. Ketchum\(^2\) gives another form of the general solution as an analytic function of a hypervariable w such that the $2n+1$ linearly independent components of w^n form a basic set of homogeneous harmonic polynomials of degree n. Both of these re-

\(^1\) Math. Ann. vol. 57 (1903) p. 333.
\(^2\) Amer. J. Math. vol. 51 (1929) p. 179.
suits use trigonometric functions, and neither of them displays immediately a set of polynomial solutions of degree \(n \). Morse and Feshbach\(^3\) indicate how one obtains, from a special case of Whittaker’s integral, a basic set of degree \(n \), but carry the computation only as far as \(n=3 \). Courant and Hilbert\(^4\) give a basic set with only one of the \(2n+1 \) members having real coefficients. The polynomials (1) for \(k=3 \), \(x_1=x \), \(x_2=y \) and \(x_3=z \), unlike those from the basic sets referred to above, are given explicitly for each \(n \). Thus, for \(n=6 \) the 13 independent spherical harmonics are obtained by assigning \((b_1 \ b_2 \ b_3)\) the values \((0 \ 6 \ 0), (0 \ 5 \ 1), (0 \ 4 \ 2), (0 \ 3 \ 3), (0 \ 2 \ 4), (0 \ 1 \ 5), (0 \ 0 \ 6), (1 \ 5 \ 0), (1 \ 4 \ 1) (1 \ 3 \ 2), (1 \ 2 \ 3), (1 \ 1 \ 4), \) and \((1 \ 0 \ 5)\) in turn. We display a typical member,

\[
H_{123}^6 = 60 x^2 y^2 z^2 - 60 x^3 y z - 20 x^2 z^2 + 12 x z^5.
\]

6. The authors wish to express their appreciation to Professor Ernest Ikenberry who directed their attention to the 3-dimensional basic sets given by Morse-Feshbach and Courant-Hilbert and to the referee who pointed out the construction of basic sets of \(p+2 \) dimensions appearing in *Higher transcendental functions*,\(^5\) A. Erdélyi, editor. These sets for \(p+2 \) dimensions differ from those of the authors in that the coefficients are in general complex while those of the authors are real.

Added in proof. When these results for \(k=3 \) only were presented at the International Congress of Mathematicians, September, 1954, Professors P. C. Rosenbloom and L. Bers kindly called the authors’ attention to a three variable basic set of harmonic polynomials given by M. H. Protter [*Generalized spherical harmonics*, Trans. Amer. Math. Soc. vol. 63 (1948) pp. 314–341]. In a forthcoming note in the Proceedings, the authors point out that their results for \(k=3 \) give a single formulation for the four classes into which Protter’s basic set was divided.

Alabama Polytechnic Institute

