SYLOW p-SUBGROUPS OF THE CLASSICAL GROUPS OVER FINITE FIELDS WITH CHARACTERISTIC PRIME TO p ## A. J. WEIR If S_n is a Sylow p-subgroup of the symmetric group of degree p^n , then any group of order p^n may be imbedded in S_n . We may express S_n as the complete product $C \circ C \circ \cdots \circ C$ of n cyclic groups of order p and the purpose of this paper is to show that any Sylow p-subgroup of a classical group (see §1) over the finite field GF(q) with q elements, where (q, p) = 1, is expressible as a direct product of basic subgroups $\overline{S_n} \cong \overline{C} \circ C \circ \cdots \circ C$ (n factors), where \overline{C} is cyclic of order p^r . (We assume always that $p \neq 2$.) Since \overline{C} may be imbedded in S_r , we see that $\overline{S_n}$ is imbedded in S_{n+r-1} in a particularly simple way. The above r is defined by the equation $q^e - 1 = p^r *$ where q^e is the first power of q which is congruent to $1 \mod p$ and $1 \mod p$ and $2 \mod p$ denotes some unspecified number prime to p. The case p = 1 is therefore of frequent occurrence, and then clearly $\overline{S_n} \cong S_n$. Professor Philip Hall was my research supervisor in Cambridge (England) during the years 1949–1952 and it is a pleasure to acknowledge here my indebtedness to him for his generous encouragement. - 1. We shall refer to the following groups as the Classical Groups:2 - I. The general linear group GL(n, q) is the group of all nonsingular $(n \times n)$ matrices with coefficients in GF(q). The order of GL(n, q) is $$q^{n(n-1)/2}(q-1)(q^2-1)\cdots (q^n-1).$$ II. The symplectic group (Komplexgruppe) C(2m, q) is the group of all $(2m \times 2m)$ matrices with coefficients in GF(q) which leave invariant a given nonsingular skew-symmetric form. For different choices of skew-symmetric form all the symplectic groups are isomorphic and their order is $$q^{m^2}(q^2-1)(q^4-1)\cdots(q^{2m}-1).$$ III. The unitary group $U(n, q^2)$ is the group of all $(n \times n)$ matrices with coefficients in $GF(q^2)$ which leave invariant a given nonsingular Hermitian form. (Hermitian has its usual meaning if we write $\bar{a} = a^q$ Received by the editors April 5, 1954. ¹ The notion of complete product is carefully discussed in [1] and a summary given in [2]. A discussion of the groups S_n in these terms will be found in [3]. ² See [4] and [5]. We use here the notation of [5]. in $GF(q^2)$.) Again there is essentially only one $U(n, q^2)$. The order is $$q^{n(n-1)/2}(q+1)(q^2-1)(q^3+1)\cdots(q^n-(-1)^n).$$ IV. The orthogonal groups $O_D(n, q)$ are the groups of all $(n \times n)$ matrices with coefficients in GF(q) which leave invariant a given nonsingular quadratic form with discriminant D. For n = 2m + 1 there is essentially only one $O_D(n, q)$. The order is $q^{m^2}(q^2-1)(q^4-1) \cdot \cdot \cdot (q^{2m}-1)$. For n=2m, there are two types, $O_1(n, q)$ and $O_{\nu}(n, q)$, depending on whether or not D is a square in GF(q). The symbol ν denotes a nonsquare in GF(q). Their orders are $$q^{m(m-1)}(q^2-1)(q^4-1)\cdots(q^{2m-2}-1)(q^m-\sigma\epsilon^m)$$ where $\epsilon = (-1)^{q-1/2}$ and $\sigma = 1$ for O_1 , $\sigma = -1$ for O_2 . 2. The general linear group. Let e be the least positive integer for which p divides q^e-1 and suppose that $q^e=1+p^r*$ where * denotes some unspecified number prime to p. It follows that $$q^{te} = 1 + tp^{r} * + C_{t,2}p^{2r} * + \cdots$$ (t integer >1). If $t = p^s *$ where s is an integer > 0, $$q^{to} = 1 + p^{r+s} * + C_{t,2}p^{2r} * + \cdots$$ Now $p \neq 2$, so that $C_{t,2}$ is divisible by p^s and the subsequent terms are divisible by p^{r+s+1} . Hence, (1) $$q^{to} = 1 + p^{r+o} *$$ where $t = p^{o} *$. [True even if $s = 0$]. Suppose n=c+ea $(0 \le c < e)$ and $a=a_0+a_1p+\cdots+a_rp^r$ $(0 \le a_i < p)$. The factors of the order of GL(n,q) which are divisible by p are q^e-1 , $q^{2e}-1$, \cdots , $q^{ae}-1$. The number of these factors which are divisible by p^{r+e} is $[a/p^e]$. (See (1).) Hence p divides the order of GL(n,q) N times where $N=ra+[a/p]+[a/p^2]+\cdots$ i.e. $N=ra+\sum_{i=1}^{r}a_i\mu_i(p)$ where $\mu_i(p)=1+p+\cdots+p^{i-1}$. In particular when $n = e, ep, \dots, ep^i$ we obtain $N_0 = r, N_1 = rp+1, \dots, N_i = rp^i + \mu_i(p)$. If G_0, G_1, \dots are the corresponding Sylow p-subgroups, $N = \sum_{i=0}^{r} a_i N_i$ so the direct product $\Pi = \prod_{i=0}^{r} G_i^{a_i}$ is a group of order p^N and degree $\sum_{i=0}^{r} a_i ep^i = ea$. By introducing a diagonal block 1_e we imbed Π in a Sylow p-subgroup of GL(n, q). Consider the Sylow p-subgroup G_0 of GL(e, q). We may regard $GF(q^e)$ as a vector space of dimension e over the field GF(q) and so we can find a basis a_1, \dots, a_e . Given $x \in GF(q^e)$ we define the matrix ^{*} There is a term q^{m-1} missing after e^m in the formula in [5, §6]. (x_{ij}) by the equation $x = \sum_j x_{ij}a_j$ and then the mapping $x \rightarrow (x_{ij})$ is an isomorphism of the multiplicative group of $GF(q^e)$ into GL(e, q). Hence GL(e, q) contains a cyclic subgroup of order $q^e - 1 = p^r *$ and G_0 is therefore cyclic of order p^r . We write $\overline{C} = G_0$. If A, B are groups of permutation matrices of degrees m, n respectively and orders a, b respectively, then A o B is a group of permutation matrices of degree mn and order a^nb . We may define G_i inductively: $G_0 = \overline{C}$, $G_i = G_{i-1} \circ C$ for then G_i has order p^{N_i} and degree ep^i . In the special case r = 1, $G_i \cong S_{i+1}$ and so we rename $G_i = \overline{S}_{i+1}$. In other words $\overline{S}_n \cong \overline{C} \circ C \circ \cdots \circ C$ (*n* factors). 3. The symplectic group. If e is even, the factors of the order of C(2m, q) which are divisible by p are again $q^{s}-1$, $q^{2s}-1$, \cdots and so a Sylow p-subgroup of C(2m, q) is already a Sylow p-subgroup of GL(2m, q). If e is odd, the factors which are divisible by p are $q^{2e}-1$, $q^{4e}-1$, \cdots , $q^{2be}-1$ where 2m=d+2eb $(0 \le d < 2e)$. Since $p \ne 2$, the number of these factors which are divisible by p^{r+e} is $\lfloor b/p^e \rfloor$ and if $b=b_0 + b_1p + \cdots + b_pp^r$ $(0 \le b_i < p)$ the order of a Sylow p-subgroup is p^M where $M=rb+\sum_1^r b_i\mu_i(p)$. The particular values 2m=2e, 2ep, \cdots again give Sylow p-subgroups G_0 , G_1 , \cdots of orders N_0 , N_1 , \cdots and a Sylow p-subgroup of C(2m, q) is of the form $\Pi=\prod_0^r G_i^{b_i}$. [The matrix of the skew-symmetric form left invariant by Π is a diagonal sum of constituent blocks J_i belonging to the G_i .] We may again define the G_i inductively: $G_i = G_{i-1} \circ C$. (The matrix J_i of G_i is the diagonal sum of p matrices J_{i-1} .) It remains to show that G_0 is *cyclic*. Consider the subgroup R of $GL_{2o}(q)$ of all $$T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$ satisfying T'JT = J where A, $B \in \overline{S}_1 \subset GL_{\bullet}(q)$ and $$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$ The condition on A, B is A'B=1 so that R is isomorphic to \overline{S}_1 and is cyclic of order p^r . Hence G_0 is cyclic of order p^r . If we write $G_0 = \overline{C}$ (now of degree 2e), the Sylow p-subgroups of C(2m, q) may be expressed as direct products of $\overline{S}_n \cong \overline{C} \circ C \circ \cdots \circ C$. 4. The unitary group. Suppose e is odd. If f is odd then q^f+1 is ⁴ See [3, §2]. It is shown there that the operation o is associative. prime to p (otherwise $q^{fo} \equiv -1 \pmod{p}$ $(p \neq 2)$). The factors of the order of $U(n, q^2)$ which are divisible by p are $$q^{2e}-1, q^{4e}-1, \cdots, q^{2be}-1$$ where n=d+2eb $(0 \le d < 2e)$, and so in this case we are reduced to the same type of construction as in §3. G_0 is again of degree 2e and by using the matrix $$J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ as above we verify that G_0 is cyclic of order p^r . Suppose $e=2\epsilon$. Now $q^{\epsilon}=1+p^{r}*$ and $q^{\epsilon}-1$ is prime to p (by the definition of e); hence $q^{\epsilon}=-1+p^{r}*$. If t is an integer greater than 1 then $$q^{te} = (-1)^{t} [1 - tp^{r} * + C_{t,2}p^{2r} * \cdots].$$ There are two cases to consider: - (i) If ϵ is odd, $q^{t\epsilon} (-1)^{t\epsilon} = p^{r+s} *$ where $t = p^s *$, and also $q^{2t\epsilon} 1 = p^{r+s} *$ so that a Sylow p-subgroup of $U(n, q^2)$ is already a Sylow p-subgroup of $GL(n, q^2)$. - (ii) If ϵ is even, the factors of the order of $U(n, q^2)$ which are divisible by p are $q^{\epsilon}-1$, $q^{2\epsilon}-1$, \cdots , $q^{a\epsilon}-1$ where n=c+ea $(0 \le c < e)$, and we may use the construction of §2. With $$J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ (of degree e), we may verify that G_0 is cyclic of order p^r . 5. The orthogonal groups. If e is even, a Sylow p-subgroup of O(2m+1, q) is already a Sylow p-subgroup of GL(2m+1, q). If e is odd, we may use the construction of §3 and verify that G_0 is cyclic of order p^r using $$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1_{e} \\ 0 & 1_{e} & 0 \end{pmatrix}$$ (of degree $2e + 1$). If $L \in O_D(n, q)$ then $$\begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix} \in O_D(n+1, q)$$ and so we may imbed $O_D(n, q)$ in $O_D(n+1, q)$ in a natural way. Consider q^m+1 , q^m-1 . One at least is prime to p, and their product is $q^{2m}-1$. In terms of the above imbedding a Sylow p-subgroup of $O_D(2m, q)$ is already a Sylow p-subgroup of $O_D(2m+1, q)$ or of $O_D(2m-1, q)$. Finally we may sum up the results of §2-§5: The Sylow p-subgroups of the classical groups over GF(q) (q prime to p) are all expressible as direct products of the basic subgroups $\overline{S}_n \cong \overline{C} \circ C \circ \cdots \circ C$. ## **BIBLIOGRAPHY** - 1. M. Krasner and L. Kaloujnine, Produit complet de groupes de permutations et problème d'extension de groupes. I, II, III, Acta Univ. Szeged. vol. 13 (1950) pp. 208-230; vol. 14 (1951) pp. 39-66, 69-82. - 2. L. Kaloujnine, Le produit complet de groupes et la théorie d'extension de Schreier, Algèbre et Théorie de Nombres. Colloques de la Recherche Scientifique, No. 24, Paris, 1950, pp. 203-206. - 3. A. J. Weir, The Sylow subgroups of the symmetric groups. Proc. Amer. Math. Soc. vol. 6 (1955) pp. 534-541. - 4. L. E. Dickson, Linear groups, Leipzig, 1901. - 5. B. L. Van der Waerden, Gruppen von Linearen Transformationen, Ergebnisse der Mathematik, "Zentralblatt für Mathematik," vol. 4, Chelsea, 1948. PRINCETON UNIVERSITY