SYLOW »-SUBGROUPS OF THE CLASSICAL
GROUPS OVER FINITE FIELDS WITH
CHARACTERISTIC PRIME TO »

A. J. WEIR

If S, is a Sylow p-subgroup of the symmetric group of degree p*,
then any group of order p” may be imbedded in S,. We may express
S» as the complete product® Co Co - - -0 C of n cyclic groups of
order p and the purpose of this paper is to show that any Sylow p-
subgroup of a classical group (see §1) over the finite field GF(q) with
g elements, where (g, ) =1, is expressible as a direct product of basic
subgroups S,=~C o Co - - -0 C (n factors), where C is cyclic of
order p*. (We assume always that p2.) Since C may be imbedded
in S,, we see that S, is imbedded in S,,, in a particularly simple
way. The above r is defined by the equation ¢°*—1=2"+where ¢* is
the first power of ¢ which is congruent to 1 mod p and + denotes some
unspecified number prime to p. The case r =1 is therefore of frequent
occurrence, and then clearly S,22S,.
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1. We shall refer to the following groups as the Classical Groups:?
I. The general linear group GL(n, q) is the group of all nonsingular
(nXn) matrices with coefficients in GF(q). The order of GL(n, q) is

Vg — (¢ —1) - -- (g~ — D).

II. The symplectic group (Komplexgruppe) C(2m, q) is the group
of all (2mX2m) matrices with coefficients in GF(q) which leave in-
variant a given nonsingular skew-symmetric form. For different
choices of skew-symmetric form all the symplectic groups are iso-
morphic and their order is

g™ — D@ — 1. (g™ —1).

II1. The unitary group U(n, q?) is the group of all (nXn) matrices
with coefficients in GF(g?) which leave invariant a given nonsingular
Hermitian form. (Hermitian has its usual meaning if we write ¢ =a*?
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! The notion of complete product is carefully discussed in [1] and a summary
given in [2]. A discussion of the groups S, in these terms will be found in [3].

3 See [4] and [5]. We use here the notation of [5].

529




530 A. J. WEIR [August

in GF(q?.) Again there is essentially only one U(n, ¢?). The order is
e+ (@~ D@+ D - (@0 = (=D,

IV. The orthogonal groups Op(n, q) are the groups of all (nXn)
matrices with coefficients in GF(q) which leave invariant a given
nonsingular quadratic form with discriminant D. For n =2m+-1 there
is essentially only one Op(n, g). The order is g™ (¢?—1)(¢*—1) - - -
(¢*m—1).

For n=2m, there are two types, Oi(n, ¢) and O,(n, ¢), depending
on whether or not D is a square in GF(q). The symbol » denotes a
nonsquare in GF(g). Their orders are

grmD(g = (gt = 1) -+ (gt = (g™ = oen)
where e=(—1)eV2 and ¢=1 for O, c=—1 for 0,.

2. The general linear group. Let e be the least positive integer for
which p divides ¢*—1 and suppose that g®*=1-p"» where » denotes
some unspecified number prime to p. It follows that

g e=141p7+ + Coop?s +--- (¢ integer >1).
If t=p?+ where s is an integer >0,
g =14 p+"s + Coap™s + -

Now p#2, so that C, . is divisible by p* and the subsequent terms are
divisible by pr+++1, Hence,

(¢)) gt =14 p+*« where = p*s. [True even if s = 0].

Suppose n=c+ea (0=c<e) and a=ao+aip+ - - - +a,p” (0=a;
<p). The factors of the order of GL(n, ¢) which are divisible by p
are ¢°—1, ¢*—1, - - -, ¢°*—1. The number of these factors which
are divisible by p+* is [a/p*]. (See (1).) Hence p divides the order
of GL(n, q) N times where N=ra+[a/p]+[a/p?]+ - - ie
N=ra+ 3 api(p) where pi(p) =1+p+ - - - +p*.

In particular when n=e, ep, - - -, ep* we obtain Ny=r, Ni=rp+1,

-, Ni=rpi+pip). If Go, Gy, - - - are the corresponding Sylow
p-subgroups, N= D 5 a;N; so the direct product II= II; G is a
group of order p¥ and degree D j aiep‘=ea. By introducing a diag-
onal block 1, we imbed II in a Sylow p-subgroup of GL(n, q).

Consider the Sylow p-subgroup Go of GL(e, g). We may regard
GF(¢*) as a vector space of dimension e over the field GF(q) and so
we can find a basis ay, - - - , @.. Given x GF(g*) we define the matrix

* There is a term g™ missing after ¢» in the formula in [5, §6].



1955] SYLOW p-SUBGROUPS 531

(x:;) by the equation x= D, x;;a; and then the mapping x—(x;;) is
an isomorphism of the multiplicative group of GF(¢°) into GL(e, q).
Hence GL(e, g) contains a cyclic subgroup of order ¢°—1=p"+and
G, is therefore cyclic of order p7. We write C =G,.

If A, B are groups of permutation matrices of degrees m, # respec-
tively and orders @, b respectively, then 4 o B is a group of permuta-
tion matrices of degree mn and order a"b.4

We may define G; inductively: Go=C, G;=G;_; o C for then G; has
order ¥+ and degree epi. In the special case r =1, G;=2S;;; and so we
rename G;=3S;;;. In other words S,=~C o Co - - - o C (n factors).

3. The symplectic group. If ¢ is even, the factors of the order of
C(2m, g) which are divisible by p are again ¢°—1, ¢?**—1, - - - and so
a Sylow p-subgroup of C(2m, q) is already a Sylow p-subgroup of
GL(2m, q).

If e is odd, the factors which are divisible by p are g?*—1, g% —1,

«++, q%—1 where 2m =d+2eb (0 =d <2e). Since p#2, the number
of these factors which are divisible by pr+* is [6/p*] and if b=b,
+bip+ - - - +b,p” (0=b:;<p) the order of a Sylow p-subgroup is p¥
where M =rb+ D % bui(p). The particular values 2m =2e, 2ep, - - -
again give Sylow p-subgroups Gy, G, + - - of orders Ny, Ny, - - - and
a Sylow p-subgroup of C(2m, q) is of the form =[]} G*. [The
matrix of the skew-symmetric form left invariant by II is a diagonal
sum of constituent blocks J; belonging to the G;.]

We may again define the G; inductively: G;=G;, 0 C. (The
matrix J; of G;is the diagonal sum of p matrices J;_;.)

It remains to show that G, is cyclic. Consider the subgroup R of

GLs(g) of all
4 0
r=(, »)
0 B

satisfying 7/JT =J where 4, BES:CGL,(¢q) and

( 01
(00
-1 0

The condition on 4, B is A’B=1 so that R is isomorphic to 5; and
is cyclic of order p". Hence G, is cyclic of order p".

If we write Go=C (now of degree 2e), the Sylow p-subgroups of
C(2m, q) may be expressed as direct products of S,=~C o Co - - - oC.

4. The unitary group. Suppose ¢ is odd. If f is odd then ¢/+1 is

4 See [3, §2]. It is shown there that the operation o is associative.
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prime to p (otherwise ¢/*= —1 (mod p) (p2)). The factors of the
order of U(n, ¢?) which are divisible by p are

q2o_1’q4c__1’...,q2bc_1

where n=d+2eb (0=d<2e¢), and so in this case we are reduced to
the same type of construction as in §3. G, is again of degree 2e¢ and by

using the matrix
01
J= ( )
10

as above we verify that G, is cyclic of order p".

Suppose e=2e. Now ¢°=1+p"+and ¢*—1 is prime to p (by the
definition of ¢); hence g¢=—1-4p"+. If ¢ is an integer greater than 1
then

g = (=D)[t = 197+ + Cuaprs -+ ]

There are two cases to consider:

(1) If € is odd, gt*—(—1)te=p **« where {=p"+, and also g%**—1
=prt* 450 that a Sylow p-subgroup of U(n, ¢?) is already a Sylow
p-subgroup of GL(n, ¢?).

(ii) If € is even, the factors of the order of U(n, ¢?) which are

divisible by p are ¢*—1, g¢g*—1,: .., ¢**—1 where n=c+tea
(0=c<e), and we may use the construction of §2.
With
J (0 1) (of d )
= e ,
L o of degree ¢

we may verify that G, is cyclic of order p".

5. The orthogonal groups. If ¢ is even, a Sylow p-subgroup of
0(2m+1, q) is already a Sylow p-subgroup of GL(2m+1, ¢).

If e is odd, we may use the construction of §3 and verify that G,
is cyclic of order pT using

0

1, (of degree 2¢ + 1).
0

If LEOp(n, q) then

(IOEO(+1)
OL> pi T e
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and so we may imbed Op(#, ¢) in Op(n+1, ¢) in a natural way.

Consider g»+1, g —1. One at least is prime to p, and their product
is ¢*—1. In terms of the above imbedding a Sylow p-subgroup of
Op(2m, q) is already a Sylow p-subgroup of Op(2m+1, ¢) or of
Op(2m—1, q).

Finally we may sum up the results of §2-§5: The Sylow p-subgroups
of the classical groups over GF(q) (q prime to p) are all expressible as
direct products of the basic subgroups S,=~Co Co - - -0 C.
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