SYLOW \(p \)-SUBGROUPS OF THE CLASSICAL GROUPS OVER FINITE FIELDS WITH CHARACTERISTIC PRIME TO \(p \)

A. J. WEIR

If \(S_n \) is a Sylow \(p \)-subgroup of the symmetric group of degree \(p^n \), then any group of order \(p^n \) may be imbedded in \(S_n \). We may express \(S_n \) as the complete product\(^1\) \(C \circ C \circ \cdots \circ C \) of \(n \) cyclic groups of order \(p \) and the purpose of this paper is to show that any Sylow \(p \)-subgroup of a classical group (see §1) over the finite field \(GF(q) \) with \(q \) elements, where \((q, p) = 1 \), is expressible as a direct product of basic subgroups \(\overline{S}_n \cong \overline{C} \circ C \circ \cdots \circ C \) (\(n \) factors), where \(\overline{C} \) is cyclic of order \(p^r \). (We assume always that \(p \neq 2 \).) Since \(\overline{C} \) may be imbedded in \(S_r \), we see that \(\overline{S}_n \) is imbedded in \(S_{n+r-1} \) in a particularly simple way. The above \(r \) is defined by the equation \(q^r - 1 = p^* \), where \(q^* \) is the first power of \(q \) which is congruent to 1 mod \(p \) and \(* \) denotes some unspecified number prime to \(p \). The case \(r = 1 \) is therefore of frequent occurrence, and then clearly \(\overline{S}_n \cong S_n \).

Professor Philip Hall was my research supervisor in Cambridge (England) during the years 1949–1952 and it is a pleasure to acknowledge here my indebtedness to him for his generous encouragement.

1. We shall refer to the following groups as the Classical Groups:\(^2\)

I. The general linear group \(GL(n, q) \) is the group of all nonsingular \((n \times n)\) matrices with coefficients in \(GF(q) \). The order of \(GL(n, q) \) is

\[
q^n(n-1)/2(q - 1)(q^2 - 1) \cdots (q^n - 1).
\]

II. The symplectic group (Komplexgruppe) \(C(2m, q) \) is the group of all \((2m \times 2m)\) matrices with coefficients in \(GF(q) \) which leave invariant a given nonsingular skew-symmetric form. For different choices of skew-symmetric form all the symplectic groups are isomorphic and their order is

\[
q^{m^2}(q^2 - 1)(q^4 - 1) \cdots (q^{2m} - 1).
\]

III. The unitary group \(U(n, q^2) \) is the group of all \((n \times n)\) matrices with coefficients in \(GF(q^2) \) which leave invariant a given nonsingular Hermitian form. (Hermitian has its usual meaning if we write \(\bar{a} = a^q \))

Received by the editors April 5, 1954.

\(^1\) The notion of complete product is carefully discussed in [1] and a summary given in [2]. A discussion of the groups \(S_n \) in these terms will be found in [3].

\(^2\) See [4] and [5]. We use here the notation of [5].
in $GF(q^n)$. Again there is essentially only one $U(n, q^n)$. The order is

$$q^{n(n-1)/2}(q + 1)(q^2 - 1)(q^3 + 1) \cdots (q^n - (-1)^n).$$

IV. The orthogonal groups $O_D(n, q)$ are the groups of all $(n \times n)$ matrices with coefficients in $GF(q)$ which leave invariant a given nonsingular quadratic form with discriminant D. For $n = 2m + 1$ there is essentially only one $O_D(n, q)$. The order is

$$q^{m^2}(q^2 - 1)(q^4 - 1) \cdots (q^{2m} - 1).$$

For $n = 2m$, there are two types, $O_1(n, q)$ and $O_2(n, q)$, depending on whether or not D is a square in $GF(q)$. The symbol ν denotes a nonsquare in $GF(q)$. Their orders are

$$q^{m(m-1)}(q^2 - 1)(q^4 - 1) \cdots (q^{2m-2} - 1)(q^m - \nu^m)$$

where $\epsilon = (-1)^{n-1/2}$ and $\sigma = 1$ for O_1, $\sigma = -1$ for O_2.

2. The general linear group. Let e be the least positive integer for which p divides $q^e - 1$ and suppose that $q^e = 1 + p^r \cdot$ where \cdot denotes some unspecified number prime to p. It follows that

$$q^{te} = 1 + tp^r \cdot + C_{t,2}p^{2r} \cdot + \cdots \quad (t \text{ integer } > 1).$$

If $t = p^s \cdot$ where s is an integer > 0,

$$q^{te} = 1 + p^{r+s} \cdot + C_{t,2}p^{2r} \cdot + \cdots .$$

Now $p \neq 2$, so that $C_{t,2}$ is divisible by $p^s \cdot$ and the subsequent terms are divisible by p^{r+s+1}. Hence,

$$q^{te} = 1 + p^{r+s} \cdot \quad \text{where } t = p^s \cdot. \quad \text{[True even if } s = 0].$$

Suppose $n = c + ea \quad (0 \leq c < e)$ and $a = a_0 + a_1p + \cdots + a_{s-1}p^s \quad (0 \leq a_i < p)$. The factors of the order of $GL(n, q)$ which are divisible by p are $q^e - 1, q^{2e} - 1, \cdots, q^{se} - 1$. The number of these factors which are divisible by p^{r+s} is $[a/p^s]$. (See (1).) Hence p divides the order of $GL(n, q)$ N times where $N = ra + [a/p] + [a/p^2] + \cdots \cdot i.e.\ N = ra + \sum_i a_i \mu_i(p)$ where $\mu_i(p) = 1 + p + \cdots + p^{i-1}$.

In particular when $n = e, ep, \cdots, ep^i$ we obtain $N_0 = r, N_1 = rp + 1, \cdots, N_i = rp^i + \mu_i(p)$. If G_0, G_1, \cdots are the corresponding Sylow p-subgroups, $N = \sum_i a_iN_i$ so the direct product $\Pi = \prod_i G_i$ is a group of order p^N and degree $\sum_i a_i ep^i = ea$. By introducing a diagonal block 1_e we imbed Π in a Sylow p-subgroup of $GL(n, q)$.

Consider the Sylow p-subgroup G_0 of $GL(e, q)$. We may regard $GF(q^e)$ as a vector space of dimension e over the field $GF(q)$ and so we can find a basis a_1, \cdots, a_e. Given $x \in GF(q^e)$ we define the matrix

* There is a term q^{m-1} missing after ν^m in the formula in [5, §6].
by the equation \(x = \sum x_i a_i \) and then the mapping \(x \mapsto (x_i) \) is an isomorphism of the multiplicative group of \(GF(q^e) \) into \(GL(e, q) \). Hence \(GL(e, q) \) contains a cyclic subgroup of order \(q^e - 1 = p^r \cdot * \) and \(G_0 \) is therefore cyclic of order \(p^r \). We write \(C = G_0 \).

If \(A, B \) are groups of permutation matrices of degrees \(m, n \) respectively and orders \(a, b \) respectively, then \(A \circ B \) is a group of permutation matrices of degree \(mn \) and order \(a^n b \).

We may define \(G_i \) inductively: \(G_0 = C \), \(G_i = G_{i-1} \circ C \) for then \(G_i \) has order \(p^{N_i} \) and degree \(e^p \). In the special case \(r = 1 \), \(G_i = S_{i+1} \) and so we rename \(G_i = S_{i+1} \). In other words \(S_n \) is the \(C \circ C \circ \cdots \circ C \) (\(n \) factors).

3. The symplectic group. If \(e \) is even, the factors of the order of \(C(2m, q) \) which are divisible by \(p \) are again \(q^e - 1, q^{2e} - 1, \cdots \) and so a Sylow \(p \)-subgroup of \(C(2m, q) \) is already a Sylow \(p \)-subgroup of \(GL(2m, q) \).

If \(e \) is odd, the factors which are divisible by \(p \) are \(q^{2e} - 1, q^{4e} - 1, \cdots, q^{2be} - 1 \) where \(2m = d + 2eb \) (\(0 \leq d < 2e \)). Since \(p \neq 2 \), the number of these factors which are divisible by \(p^{r+1} \) is \(\left[\frac{b}{p^r} \right] \) and if \(b = b_0 + b_1 p + \cdots + b_r p^r \) (\(0 \leq b_i < p \)) the order of a Sylow \(p \)-subgroup is \(p^M \) where \(M = \sum b_i \mu_i(p) \). The particular values \(2m = 2e, 2ep, \cdots \) again give Sylow \(p \)-subgroups \(G_0, G_1, \cdots \) of orders \(N_0, N_1, \cdots \) and a Sylow \(p \)-subgroup of \(C(2m, q) \) is of the form \(\Pi = \prod G_i^k_\). [The matrix of the skew-symmetric form left invariant by \(\Pi \) is a diagonal sum of constituent blocks \(J_i \) belonging to the \(G_i \).]

We may again define the \(G_i \) inductively: \(G_i = G_{i-1} \circ C \). (The matrix \(J_i \) of \(G_i \) is the diagonal sum of \(p \) matrices \(J_{i-1} \).)

It remains to show that \(G_0 \) is cyclic. Consider the subgroup \(R \) of \(GL_{2e}(q) \) of all

\[
T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}
\]

satisfying \(T'JT = J \) where \(A, B \subseteq \mathbb{S}_1 \subseteq GL_e(q) \) and

\[
J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

The condition on \(A, B \) is \(A'B = 1 \) so that \(R \) is isomorphic to \(\mathbb{S}_1 \) and is cyclic of order \(p^r \). Hence \(G_0 \) is cyclic of order \(p^r \).

If we write \(G_0 = \mathbb{C} \) (now of degree \(2e \)), the Sylow \(p \)-subgroups of \(C(2m, q) \) may be expressed as direct products of \(\mathbb{S}_e \cong \mathbb{C} \circ C \circ \cdots \circ C \).

4. The unitary group. Suppose \(e \) is odd. If \(f \) is odd then \(q^f + 1 \) is

\[\text{See [3, §2]. It is shown there that the operation } \circ \text{ is associative.}\]
prime to \(p \) (otherwise \(q^{d^*} \equiv -1 \pmod{p} \) \((p \neq 2)\)). The factors of the order of \(U(n, q^2) \) which are divisible by \(p \) are
\[
q^{2e} - 1, q^{4e} - 1, \ldots, q^{2be} - 1
\]
where \(n = d + 2eb \) \((0 \leq d < 2e)\), and so in this case we are reduced to the same type of construction as in §3. \(G_0 \) is again of degree \(2e \) and by using the matrix
\[
J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]
as above we verify that \(G_0 \) is cyclic of order \(p^e \).

Suppose \(e = 2e \). Now \(q^e = 1 + p^r \). and \(q^i - 1 \) is prime to \(p \) (by the definition of \(e \)); hence \(q^e = -1 + p^r \). If \(t \) is an integer greater than 1 then
\[
q^{te} = (-1)^t \left[1 - t p^r + C_{t,2} p^{2r} \cdots \right].
\]
There are two cases to consider:

(i) If \(e \) is odd, \(q^{2e} = -1 + p^r \) where \(t = p^r \), and also \(q^{2te} - 1 = p^{r+s} \) so that a Sylow \(p \)-subgroup of \(U(n, q^2) \) is already a Sylow \(p \)-subgroup of \(GL(n, q^2) \).

(ii) If \(e \) is even, the factors of the order of \(U(n, q^2) \) which are divisible by \(p \) are \(q^e - 1, q^{2e} - 1, \ldots, q^{ae} - 1 \) where \(n = c + ea \) \((0 \leq c < e)\), and we may use the construction of §2.

With
\[
J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]
(of degree \(e \)),
we may verify that \(G_0 \) is cyclic of order \(p^e \).

5. The orthogonal groups. If \(e \) is even, a Sylow \(p \)-subgroup of \(O(2m+1, q) \) is already a Sylow \(p \)-subgroup of \(GL(2m+1, q) \).

If \(e \) is odd, we may use the construction of §3 and verify that \(G_0 \) is cyclic of order \(p^r \) using
\[
J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\]
(of degree \(2e + 1 \)).

If \(L \in O_D(n, q) \) then
\[
\begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix} \in O_D(n + 1, q)
\]
and so we may imbed $O_D(n, q)$ in $O_D(n+1, q)$ in a natural way.

Consider $q^{m+1}, q^m - 1$. One at least is prime to p, and their product is $q^{2m} - 1$. In terms of the above imbedding a Sylow p-subgroup of $O_D(2m, q)$ is already a Sylow p-subgroup of $O_D(2m+1, q)$ or of $O_D(2m-1, q)$.

Finally we may sum up the results of §2—§5: The Sylow p-subgroups of the classical groups over $GF(q)$ (q prime to p) are all expressible as direct products of the basic subgroups $S_n \cong \mathbb{C} \circ C \circ \cdots \circ C$.

Bibliography

Princeton University