ON CERTAIN SUBSETS OF FINITE BOOLEAN ALGEBRAS

L. K. DURST

1. The boolean algebra B_n, of finite dimension n, may be written as the direct union $B_1 \times B_1 \times \cdots \times B_1$ of n copies of B_1. Consequently each element u of B_n may be represented by an n-digit binary number. Let G_n be the group of those permutations on the elements of B_n which interchange or invert various of the factors in the direct union expansion. Thus the elements of G_n permute the components of the u or interchange 0, 1 in certain components of every u in B_n. The order of G_n is therefore $2^n n!$.

Two subsets of B_n will be called congruent modulo G_n if one is the image of the other under transformation by an element of G_n. Clearly sets congruent modulo G_n have the same number of elements. The number of elements in a subset will be called the order of the subset. Let $N_n(s)$ be the number of congruence classes of subsets of order s. Note that $N_n(s) = N_n(2^n - s)$. Pólya [1] has calculated $N_n(s)$ for $0 \leq s \leq 2^n$ and $n = 1, 2, 3, 4$, and Slepian [2] has found the values of $N_n = \sum_{i=0}^{2^n} N_n^{(i)}$ for $n = 5, 6$. Trivially, $N_n(0) = N_n(1) = 1$, all n; and it is almost as obvious that $N_n^{(2)} = n$, all $n \geq 1$ (see §2).

In this note an elementary argument is given which yields an explicit expression for $N_n^{(3)}$ good for all $n > 1$ (Theorem 2).

2. The procedure for calculating $N_n^{(3)}$ is based on the notion of the “dimension” of a subset of B_n. Let S be a subset of B_n whose order is at least 2. Let $\vee S$ and $\wedge S$ be the lattice-union and lattice-intersection, respectively, of the elements of S. (The symbols \vee, \wedge, and \triangleq will be used for the lattice operations and the ordering relation in B_n, while \cup, \cap, and \subseteq will be reserved for their set-theoretical counterparts.) Since the quotient $\vee S / \wedge S$ is relatively complemented, it is a boolean algebra, say B_r if of dimension r. B_r may be called the connected closure of S. The relation between a subset S and its connected closure will be written: $S < B_r$. The dimension of S is defined to be the dimension of B_r if $S < B_r$. Thus $S < B_r$ implies $\dim S = r$. If the order of S is two, $\dim S$ is simply the usual metric in B_n.

The technique to be used for counting incongruent sets in B_n is to determine the number of incongruent sets of given order having maximal dimension in B_k for each $k \leq n$. Thus, for instance, $N_n^{(2)} = n$,
all \(n \geq 1 \); for in \(B_k \) all sets of order two and maximal dimension are congruent.

Lemma. Suppose \(S \) is a subset of \(B_n \) of order 3 or more. If \(S = \{ u \} \cup T \) and \(T \leq B_r \), then \(S \) has maximal dimension if and only if \(u \in B'_r \) where \(B'_r \) is the set of the complements of the elements of \(B_r \).

Proof. If \(u \in B'_r \), then \(u \cap (\cup T) \leq u \cap u' = 0 \) and \(u \cup (\cup T) \geq u \cup u' = I \), i.e. \(S = \{ u \} \cup T \) has maximal dimension. But if \(u \in B'_r \), and \(v \in B_r \) then either \(u \cap v > 0 \) or \(u \cup v < I \), since complements are unique, and in this case \(\dim S \) cannot be maximal.

3. Consider now the case \(s = 3 \) and suppose \(S = \{ u_1, u_2, u_3 \} \). Let \(r_i = \dim \{ u_j, u_k \} \), where \(i, j, k \) is some permutation of \(1, 2, 3 \). Clearly \(1 \leq r_i \leq n \).

Theorem 1. \(\dim \{ u_1, u_2, u_3 \} = n \) if and only if \(r_1 + r_2 + r_3 = 2n \).

Proof. If \(u_i = x^i_1 x^i_2 \cdots x^i_n, 1 \leq i \leq 3 \), are the binary representations of the \(u_i \), no generality is lost by assuming \(x^1_i = 1, 1 \leq i \leq n; x^2_i = 1, 1 \leq i \leq n-r_3; x^3_i = 0, n-r_3+1 \leq i \leq n. \) Suppose further that \(x^3_i = 0, 1 \leq i \leq k \) and \(n-r_3+1 \leq i \leq n-l \); \(x^3_i = 1, k+1 \leq i \leq n-r_3 \) and \(n-l+1 \leq i \leq n \); where \(k \leq n-r_3, l \leq r_3 \). The lemma implies that \(\dim \{ u_1, u_2, u_3 \} = n \) if and only if \(k = n-r_3 \). But \(r_1 = k+l, r_2 = k+r_3-l, \) so that \(r_1 + r_2 + r_3 = 2(k+r_3) \); from which the theorem follows.

The expressions for the binary components also give the following immediate corollary.

Corollary. If \(\{ u_1, u_2, u_3 \}, \{ v_1, v_2, v_3 \} \) are subsets of \(B_n \) with maximal dimension, and if

\[
\dim \{ u_i, u_j \} = \dim \{ v_i, v_j \}, \quad 1 \leq i, j \leq 3,
\]

then \(\{ u_1, u_2, u_3 \} \) and \(\{ v_1, v_2, v_3 \} \) are congruent modulo \(G_n \).

Theorem 1 and the corollary imply that the number of incongruent sets of order 3 having maximal dimension in \(B_n \) is precisely the number of solutions of the following diophantine system:

\[
2n = x + y + z, \quad 1 \leq x \leq y \leq z \leq n.
\]

Theorem 2.

\[
N^{(3)}_n = \sum_{k=2}^{n} \left\{ \left[\frac{k}{3} \right] + \sum_{r=0}^{[k/3]} \left[\frac{k - 3r}{2} \right] \right\}.
\]

Proof. For each \(k, 2 \leq k \leq n \), it suffices to count the number of solutions, \(N^{(3)}_k - N^{(3)}_{k-1} \), of
2k = x + y + z, \quad 1 \leq x \leq y \leq z \leq k.

Suppose \(z = k - r \), then \(0 \leq r \leq \lfloor k/3 \rfloor \) since \(z = 2k - x - y \geq 2k - 2z \), or \(3z \geq 2k \). Now \(y \leq z = k - r \) and \(x = k + r - y \geq k + r - (k - r) = 2r \), but \(x \leq (k + r)/2 \) so \(2r \leq x \leq (k + r)/2 \). For \(r = 0 \), there are \(\lfloor k/2 \rfloor \) possible values for \(x \); and if \(r > 0 \), there are \(\lfloor (k + r)/2 - (2r - 1) \rfloor \). Hence

\[
N^{(3)}_k - N^{(3)}_{k-1} = \left\lceil \frac{k}{2} \right\rceil + \sum_{r=1}^{\lfloor k/3 \rfloor} \left\lceil \frac{k - 3r + 2}{2} \right\rceil = -1 + \sum_{r=0}^{\lfloor k/3 \rfloor} \left\lceil \frac{k - 3r + 2}{2} \right\rceil = \left\lceil \frac{k}{3} \right\rceil + \sum_{r=0}^{\lfloor k/3 \rfloor} \left\lceil \frac{k - 3r}{2} \right\rceil.
\]

REFERENCES

Bell Telephone Laboratories and
The Rice Institute