ON \(u \)-STABLE COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS

LOUIS A. KOKORIS

A commutative power-associative algebra \(A \) of characteristic > 5 with an idempotent \(u \) may be written\(^1\) as the supplementary sum \(A = A_u(1) + A_u(1/2) + A_u(0) \) where \(A_u(\lambda) \) is the set of all \(x_\lambda \) in \(A \) with the property \(x_\lambda u = \lambda x_\lambda \). The subspaces \(A_u(1) \) and \(A_u(0) \) are orthogonal subalgebras, \([A_u(1/2)]^2 \subseteq A_u(1) + A_u(0) \) and \(A_u(\lambda)A_u(1/2) \subseteq A_u(1/2) + A_u(1 - \lambda) \) for \(\lambda = 0, 1 \). The algebra \(A \) is called \(u \)-stable if \(A_u(\lambda)A_u(1/2) \subseteq A_u(1/2) \) and is called stable if it is \(u \)-stable for every idempotent element \(u \) of \(A \).

A. A. Albert has shown in [3] that a simple commutative power-associative algebra \(A \) of degree > 1 over its center \(F \) with characteristic prime to 30 is a Jordan algebra if and only if it is stable. Moreover, it is known that every simple algebra of degree > 2 is a Jordan algebra. Thus there remains the problem of determining the nonstable simple algebras of degree two. There do exist simple algebras of characteristic \(p > 5 \) which are not Jordan algebras [3; 4]. Of course, these algebras are not stable, although they may be \(u \)-stable for some idempotent \(u \). In this paper we shall obtain the following result.

Theorem. Let \(A \) be a \(u \)-stable simple commutative power-associative algebra of degree 2 over its center \(F \) of characteristic zero. Then \(A \) is a Jordan algebra.

We shall use all of the results of [3] so we shall adopt the notations of that paper. In particular, all the results of the section giving properties of \(u \)-stable algebras will be used. For convenience let us state a few of the required results here.

In a simple \(u \)-stable algebra \(A \) there exists an element \(w \) in \(A_u(1/2) \) such that \(w^2 = 1 \). Then \(A_u(1) = uB, A_u(0) = vB, \) and \(A_u(1/2) = wB + G \) where \(B \) is the set of all elements \(b \) of \(C = A_u(1) + A_u(0) \) with the property \((wb)w = b\) and \(G \) is the set of all quantities \(g \) of \(A_u(1/2) \) with the property \(wg = 0 \). Since \(e = (1/2)(1 + w) \) and \(f = 1 - e \) are orthogonal idempotents, we may decompose \(A \) relative to \(e \). It can be shown that \(A_e(1) = eB, A_e(0) = fB, \) and \(A_e(1/2) = B(u - v) + G \). The set \(B \) is a subalgebra of \(C \) and the product of two elements in \(G \) is in \(B \). Also,

\(^1\) The results of this paragraph are given in [1]. The numbers in brackets refer to the bibliography at the end of the paper.
the following multiplicative relationships exist for any \(a, b \) in \(B \), \(g \) in \(G \).

(1) \(w(bu) = w(bv) = \frac{1}{2} w(b) \),

(2) \((wa)b = w(ab), (wa)(wb) = ab \),

(3) \(g[b(u - v)] = wd \),

(4) \(gb = h - wc \),

(5) \((wb)g + w(gb) = -d(u - v) \),

(6) \((wb)[a(u - v)] = k \),

for \(h, k \) in \(G \), and \(c, d \) in \(B \). The quantity \(d \) in relation (5) is the \(d \) of (3).

The theorem can evidently be reduced to the case where \(F \) is algebraically closed. Then\(^2\) \(\text{Au}(1) = uF + N_1 \) and \(\text{Au}(0) = vF + N_0 \) where \(N_1 \) is the radical of \(A_u(\lambda) \) and \(N' = N = N + N(u - v) \) is the radical of \(C \) where \(N \) is the radical of \(B \). Similarly, \(A_e(1) = eF + M_1 \), \(A_e(0) = fF + M_0 \), \(M_1 \) is the set of all elements \(ec \) where \(c \) is in \(N \) and we have the corresponding result for \(M_0 \).

The following important known\(^3\) lemma can now be stated.

Lemma 1. Let \(A \) be a commutative power-associative algebra of degree two over a field \(F \) of characteristic zero. Then \(A_e(1/2)A_e(1) \subseteq A_e(1/2) + M_0 \) and \(A_e(1/2)A_e(0) \subseteq A_e(1/2) + M_1 \). Note that the result of the lemma is not vacuous here since we are assuming \(u \)-stability only.

Consider the product \((eB)G\) which was used to obtain (4) and (5). By Lemma 1, \((eB)G \subseteq A_e(1/2) + M_0\) so that \((b + wb)g = a(u - v) + h + c - wc\) for \(a, b \) in \(B \), \(g, h \) in \(G \), and \(c \) in \(N \) the radical of \(B \). Then \((wb)g = a(u - v) + c\) and it is shown in [3] that \(a = -d \) of relation (3). Also\(^4\) the quantity \(d \) in (3) and (5) is in \(N \). These results may be stated as follows.

Lemma 2. Let \(A \) be a \(u \)-stable commutative power-associative algebra over a field of characteristic zero. Then \(GB \subseteq G + wN, G[B(u - v)] \subseteq wN, w(GB) \subseteq N, (wB)G \subseteq N' \), and \(w(GB) + (wB)G \subseteq N(u - v) \).

It will also be necessary to have

Lemma 3. The product \(G\{ (wB)[B(u - v)] \} \subseteq N \).

For proof substitute \(x = g, y = a, z = b(u - v) \) into the multilinear

\(^2\) By Theorem 2 of [2].

\(^3\) See Theorem 6 of [5].

\(^4\) [2, Lemma 10].
identity obtained from the associativity of fourth powers. Relation (1) implies \(wz = w(az) = 0 \) and we have \(wg = 0 \) by definition of \(G \). Thus

\[
4(wa)(gz) = w[(ga)z + (gz)a + g(az)] + g[(wa)z] + a[(gz)w] + z[(wa)g + w(ga)].
\]

By (3) and (2), \((wa)(gz)\) is in \((wB)(wN) \subseteq N\). The quantity \(ga \) is in \(G+wN \) by (4); hence \((ga)z\) is in \(G[B(u-v)]+(wN)[B(u-v)] \). Consequently, (3) and (6) imply \(w[(ga)z] \) in \(N \). Since \((gz)a\) lies in \(\{G[B(u-v)]\}B \subseteq (wN)B \subseteq wN \), \(w[(gz)a] \) is in \(N \). Also \(w[g(az)] \) is in \(w \cdot G[B(u-v)] \subseteq w(wN) = N \). The product \(a[(gz)w] \) is in \(N \) and \(z[(wa)g + w(gz)] \) is contained in \([B(u-v)] \cdot [N(u-v)] \subseteq N \). This completes the proof of Lemma 3.

The proofs of Lemmas 15 and 17 of [3] which state that \([Au(1/2) \cdot N']C \subseteq N'A_u(1/2) \) and \([Au(1/2)N']A_u(1/2) \subseteq N' \) follow without change. We also have without change that \(N' + A_u(1/2)N' \) is an ideal of \(A \). Since \(A \) is simple, this ideal must be zero because it does not contain the identity element. Thus \(A = uF + vF + A_u(1/2) \), which is a Jordan algebra. A Jordan algebra is stable so we have as a corollary that a simple commutative power-associative algebra of degree 2 and characteristic 0 is stable if and only if it is \(u \)-stable.

Bibliography

University of Washington

\(^5\) The identity is stated in all of our references.