ON SPACES FILLED UP BY CONTINUOUS COLLECTIONS
OF ATRIODIC CONTINUOUS CURVES

R. D. ANDERSON AND MARY-ELIZABETH HAMSTROM

Throughout this paper, \(G \) will denote a nondegenerate continuous collection of atriodic continuous curves (i.e. arcs or simple closed curves) filling up a compact metric continuum \(M \). As is well known, we may regard \(G \) itself as a compact metric continuum, with the elements of the collection \(G \) as the points of the space \(G \) and with \(G \), as a space, the image of \(M \) under an open continuous mapping whose inverse sets are the elements of the collection \(G \).

The principal results of this paper are the following theorems.

Theorem I. No closed, totally disconnected point set separates \(M \).\(^1\)

Theorem II. If each element of \(G \) is an arc, then no closed, totally disconnected point set separates any connected open subset of \(M \).

Theorem III. If \(G \) is a two-dimensional Cantor manifold,\(^2\) then \(M \) is not separated by any rational curve.\(^3\)

As an immediate corollary of Theorem I, we have

Theorem IV.\(^4\) At no point of \(M \) is the dimension of \(M \) less than 2.

A well known result cited in [2, Theorem VI7, page 91] states, in effect, that if \(\dim M - \dim G = k > 0 \), then at least one element of \(G \) has dimension not less than \(k \). From Theorem IV, this result, and the fact that every atriodic continuous curve is one-dimensional, we obtain

Theorem V. If \(G \) is a one-dimensional continuum, then \(M \) is two-dimensional at each of its points.

\(^1\) The theorem of [1] shows emphatically that Theorem I cannot be strengthened to the extent of deleting the condition that the continuous curves of \(G \) be atriodic.

\(^2\) An \(n \)-dimensional Cantor manifold is a compact metric \(n \)-dimensional space which is not separated by any \((n-2)\)-dimensional subspace.

\(^3\) A rational curve is a compact metric continuum \(K \) such that each point of \(K \) is contained in arbitrarily small neighborhoods relative to \(K \) whose boundaries are countable. It is to be noted that a rational curve is not necessarily locally connected.

\(^4\) Eldon Dyer has recently obtained some general and interesting theorems about the dimension of \(G \) if \(M \) is \(n \)-dimensional and \(G \) is a continuous collection of arcs (or dendrons).
We shall give a proof of Theorem I in some detail. The proofs of Theorems II and III are similar to that of Theorem I. We shall simply indicate the arguments for these.

A simple chain in \(M \) is a finite collection \(x_1, x_2, \ldots, x_n \) of open sets such that \(x_i \cap x_j \) exists if and only if \(|i - j| \leq 1 \). The sets \(x_1, x_2, \ldots, x_n \) are called the links of the chain. We note that if \(s \) is an open interval of the arc \(t \) which lies in \(M \), there is an open subset \(U \) of \(M \) such that \(U \cdot t = s \) and \(\overline{U} \cdot i = \overline{s} \). If \(t \) is an arc and \(\epsilon \) is any positive number, then there exists a simple chain \(C \) covering \(t \) each of whose links is of diameter less than \(\epsilon \) and intersects \(t \) in a connected set.

A special case of a result of J. H. Roberts [3, Theorem 2] states that if \(E \) is a continuous collection of arcs filling up a compact metric space, there is a subcollection \(E' \) of \(E \) such that \(E' \) is dense in \(E \) and \(E \) is equicontinuous\(^6\) at each element of \(E' \). An argument suggested by that outlined in [3] yields a similar result in the case where \(E \) is a continuous collection of atriodic continuous curves. We do not give this argument in detail but henceforth let \(G' \) be a subcollection of \(G \) at each element of which \(G \) is equicontinuous.

Proof of Theorem I. Suppose, contrary to the statement of Theorem I that some closed, totally disconnected point set \(T \) separates \(M \) into sets \(D_1 \) and \(D_2 \). Then, since \(M \) is connected and \(G \) is continuous, some element \(g_1 \) of \(G \) intersects each of \(D_1 \) and \(D_2 \) and, since \(G' \) is dense in \(G \), some element \(g \) of \(G' \) intersects each of \(D_1 \) and \(D_2 \). Let \(h \), with endpoints \(a_1 \) and \(a_2 \) in \(D_1 \) and \(D_2 \) respectively, be an arc in \(G \). For each \(i \), \(i = 1, 2 \), let \(A_i \) be an open set containing \(a_i \) with \(\overline{A_i} \) contained in \(D_i \). Let \(C: c_1, \ldots, c_5 \) be a simple chain covering \(h \) such that (1) \(c_1 - c_1 \cdot c_2 \) contains \(A_1 \), (2) \(c_5 - c_4 \cdot c_5 \) contains \(A_2 \), (3) \(\tilde{c}_1 + \tilde{c}_2 \) is a subset of \(D_1 \), (4) \(\tilde{c}_4 + \tilde{c}_5 \) is a subset of \(D_2 \), (5) for \(i = 1, \ldots, 5 \), \(c_i \cdot h \) is connected, and (6) for \(i = 2, 3, 4 \), \(c_i \) and \(g - h \) are mutually exclusive. Clearly such a chain exists. Let \(U \) containing \(g \) be an open subcollection of \(G \) such that each element \(u \) of \(U \) contains an arc \(u_x \) with endpoints in \(A_1 \) and \(A_2 \) respectively such that (1) \(u_x \), covered by \(C \), (2) \(u - u_x \) does not intersect \(\tilde{c}_5 \), and (3) \(u_x \) does not contain two disjoint arcs each intersecting \(A_1 \) and \(c_3 \), \(A_2 \) and \(c_3 \), or \(c_2 \) and \(c_4 \). From the equicontinuity of \(G \) at \(g \) it follows that such a set \(U \) exists.

Let \(\bar{G} \) containing \(g \) be a nondegenerate closed connected subcollection of \(U \) and let \(\bar{H} \) containing \(h \) be a collection of arcs in one-to-one correspondence with \(\bar{G} \) such that each element of \(\bar{H} \) is contained in

\(^6\) The collection \(G \) as above is said to be equicontinuous at the element \(g \) of \(G \) provided that for any \(\epsilon > 0 \) and any point \(p \) of \(g \), there exists a \(\delta > 0 \) such that if \(x \) and \(y \) are points of the same element \(g' \) of \(G \) and are each within \(\delta \) of \(p \), then there is an arc in \(g' \) containing \(x + y \) and of diameter less than \(\epsilon \).
the corresponding element of \(G \), is covered by \(C \), and has its endpoints in \(A_1 \) and \(A_2 \) respectively. Let \(\tilde{H} \) be topologized so as to be homeomorphic with \(G \) under the correspondence above.

Let \(g' \) be an element of \(G \) distinct from \(g \) and let \(h' \) be the corresponding element of \(\tilde{H} \). Let \(W \) be an open set in \(c_3 - (c_2 + c_4) \cdot c_3 \) such that \(\bar{W} - W \) does not intersect \(T \), \(W \) contains \(T \cdot h' \), and \(W \) does not intersect \(h' \). Let \(Z_1 \) and \(Z_2 \) be the subsets of \(\bar{W} - W \) in \(D_1 \) and \(D_2 \) respectively. Each of \(Z_1 \) and \(Z_2 \) is closed.

For each element \(k \) of \(\tilde{H} \), let \(N(k) \) be the collection of those components of \(k \cdot W \) having limit points in each of \(Z_1 \) and \(Z_2 \). Let \(n(k) \) be the number \((\text{mod } 2)\) of elements in \(N(k) \). Let \(\tilde{H}_0 \) be the collection of all elements \(k \) of \(\tilde{H} \) for which \(n(k) = 0 \). The collection \(\tilde{H}_0 \) contains \(h' \) and \(\tilde{H} - \tilde{H}_0 \) contains \(h \). We wish to show that each of \(\tilde{H}_0 \) and \(\tilde{H} - \tilde{H}_0 \) is open and hence that \(\tilde{G} \) is not connected—a contradiction.

Let \(\tilde{h} \) be any element of \(\tilde{H} \). There exists a simple chain \(C(\tilde{h}) \) covering \(h \) such that (1) each link of \(C(\tilde{h}) \) is a subset of a link of \(C \) and intersects \(\tilde{h} \) and (2) no link of \(C(\tilde{h}) \) intersects (a) each of \(D_1 \) and \(D_2 \) but not \(T \), (b) each of \(Z_1 \) and \(Z_2 \), or (c) each of \(\bar{W} \) and \(T - T \cdot W \).

Let \(X(\tilde{h}) \) be the collection of links of \(C(\tilde{h}) \) intersecting \(\bar{W} \). Let \(Y(\tilde{h}) \) be the collection of all maximal simple chains whose links are elements of \(X(\tilde{h}) \). If \(k \) is any element of \(\tilde{H} \) containing a subarc \(k' \) with endpoints in \(A_1 \) and \(A_2 \) and with \(k' \) covered by \(C(\tilde{h}) \), then \(n(k) = n(\tilde{h}) \). This follows from the fact that each element of \(N(k) \) is covered by exactly one element of \(Y(\tilde{h}) \) and the number of elements of \(N(k) \) in an element \(y \) of \(Y(\tilde{h}) \) is 1 or 0 \((\text{mod } 2)\) according as the end links of \(y \) do or do not intersect different sets of the two sets \(Z_1 \) and \(Z_2 \). Hence \(\tilde{H}_0 \) and \(\tilde{H} - \tilde{H}_0 \) are each open and Theorem I is proved.

Indication of proof of Theorem II. Suppose, contrary to Theorem II that there exists a connected open set \(D \) in \(M \) separated by a closed and totally disconnected set \(T \). Let \((D_1, D_2) \) be a separation of \(D \) by \(T \). Then some element of \(G \) must contain an arc in \(D \) with endpoints in \(D_1 \) and \(D_2 \) respectively. Since \(G \) is a collection of arcs, some element of \(G' \) must also contain an arc in \(D \) with endpoints in \(D_1 \) and \(D_2 \) respectively and the argument is essentially reduced to that for Theorem I. We note that if the elements of \(G \) are not restricted to being arcs, then there exist simple examples without such an element of \(G' \) existing and with an open set separated by a point.

Indication of proof of Theorem III. Suppose \(G \) is a two-dimensional Cantor manifold and \(M \) is separated by a rational curve \(J \) into the two mutually separated sets \(D_1 \) and \(D_2 \). Clearly some element of \(G \) must intersect each of \(D_1 \) and \(D_2 \) for otherwise the set of those elements of \(G \) lying completely in \(J \) must exist and be closed.
and in G must separate G. But by Theorem I this set is 0-dimen-
sional, a contradiction. Hence some element of G intersects each of
D_1 and D_2, and thus some element of G' contains an arc h with end-
points in D_1 and D_2 respectively. But by an argument similar to that
used in the proof of Theorem I we can exhibit an open subcollection
U of G with U containing g and with $U - U$ countable, a contradic-
tion.

REFERENCES

2. Witold Hurewicz and Henry Wallman, Dimension theory, Princeton University
 Press, 1948.

THE UNIVERSITY OF PENNSYLVANIA AND
GOUCHER COLLEGE

A NOTE ON BASIC SETS OF HOMOGENEOUS
HARMONIC POLYNOMIALS

E. P. MILES, JR. AND E. WILLIAMS

For any set of non-negative integers (b_j) such that $b_1 \leq 1$ and
$\sum_{j=1}^{k} b_j = n$, let

$$H_{b_1 \ldots b_k}^n = \sum (-1)^{\lceil a_1/2 \rceil} \frac{n!}{\prod_{j=1}^{k} a_j!} \frac{\prod_{j=2}^{k} \left(\frac{b_j - a_j}{2} \right)!}{\prod_{j=2}^{k} \left(\frac{b_j - a_j}{2} \right)!} \prod_{j=1}^{k} x_j^{a_j}$$

where the summation is extended over all (a_j) such that,
(a) $a_j \equiv b_j \mod 2$, $j = 1, 2, \ldots, k$,
(b) $\sum_{j=1}^{k} a_j = n$,
(c) $a_j \leq b_j$, $j = 2, 3, \ldots, k$.

The polynomials (1) were shown by the authors to form a basic set
of homogeneous harmonic polynomials in k variables [1].

It is easily seen that the following differential recursion formulas
hold for these polynomials:

Presented to the Society, November 26, 1954 under the title A basic set of homo-
geneous polynomials in k variables. II; received by the editors November 29, 1954.

1 Numbers in brackets refer to bibliography at the end of the paper.