ON A CONVERGENCE PROBLEM

G. SHAPIRO

Research Problem 25 [1] reads as follows:
If \(a_1 < a_2 < \cdots \) are positive integers, if \(C \) is compact, and if \(\sin a_n x \to 0 \) for all \(x \) in \(C \), prove that the convergence must actually be uniform.

The following example shows that the "theorem" is false.
Let
\[
a_n = 2^n \quad (n = 1, 2, \cdots);
\]
let \(C \) be the compact set of points
\[
(0, \pi, \pi/2, \pi/4, \pi/8, \cdots).
\]

Obviously \(\sin a_n x \to 0 \) for each \(x \) in \(C \), but for any \(\epsilon < 1 \) and any positive integer, \(N \), there is an \(x \) in \(C \) (namely, \(x = \pi/2^{N+2} \)) such that
\[
| \sin a_{N+1} x | = | \sin \pi/2 | = 1 > \epsilon,
\]
so that the convergence is not uniform.

REFERENCE

AIRCRAFT ARMAMENTS, INC.

Received by the editors January 21, 1955.