ON THE MAXIMAL DILATION OF QUASICONFORMAL MAPPINGS

KURT STEBEL

1. Let G and G' be two plane open sets and $w(z)$ a topological mapping of G onto G'. By Q we denote any quadrilateral in G, i.e. the topological image of a closed square with a distinguished pair of opposite sides. The conformal modulus m of Q is the ratio $m = a/b$ of the sides of a conformally equivalent rectangle R, the distinguished sides of Q corresponding to the sides of length b. We call this essentially unique conformal mapping of Q onto R the canonical mapping of Q. The modulus m is equal to the extremal distance of the two distinguished sides of Q with respect to Q. The maximal dilation of the mapping $w(z)$ on G is the number

$$K[w(z)] = K = \sup_{Q} \frac{m'}{m}$$

where m' denotes the modulus of the image Q' of Q under the mapping $w(z)$ and Q varies over all possible quadrilaterals. The mapping is said to be quasiconformal if K is finite.

Given a closed subset $E \subset G$ (closed only with respect to G). Then, $G - E$ is open, and if we denote by $K_0[w(z)] = K_0$ the maximal dilation of $w(z)$ on $G - E$, we get $K_0 \leq K$. We are looking for sufficient conditions on E such that $K_0 = K$. The answer will be different if we consider only the class of all quasi-conformal mappings of G or the larger class of all topological mappings, including the ones with infinite maximal dilation. We call a point set E which allows the conclusion $K_0 = K$ deletable for the class in consideration. It was proved by Ahlfors in [1] that analytic arcs are deletable for the class of all topological mappings. It is also proved there that $K = \sup_{\bar{Q}} \frac{m'}{m}$, where \bar{Q} denotes any analytic quadrilateral, i.e. a quadrilateral Q with a canonical mapping which is conformal in an open neighborhood of Q, and furthermore that K does not become larger if the boundary curves of the quadrilaterals are allowed to have points in common with the boundary of G.

2. If E is a discrete point set, we can consider the slightly more general problem that $w_0(z)$ is only known to be quasiconformal with maximal dilation K_0 on $G - E$, without knowing that $w_0(z)$ is a topological mapping of the whole open set G. What are the conditions on

Presented to the Society, February 26, 1955; received by the editors November 8, 1954 and, in revised form, December 31, 1954.

1 Theorem 4, p. 9.
E in order that for every $w_0(z)$ there is a topological mapping $w(z)$ of G which coincides with $w_0(z)$ on $G-E$ and has the same maximal dilation. We call $w(z)$ the continuation of $w_0(z)$. It is clear that there can exist only one topological continuation.

Theorem 1. A necessary and sufficient condition that every quasi-conformal mapping $w_0(z)$ of $G-E$ has a continuation to G with the same maximal dilation is that every compact subset of E is a nullset O_{AD}.²

The condition is necessary, for, if E_0 is any compact subset of E which is not a set O_{AD}, there exists a parallel slit mapping of the complement of E_0, which is conformal outside E_0 and cannot be extended conformally over E_0.

If, on the other hand, E possesses the property of the theorem, then to every point $z_0 \subset E$ there exists a sequence of nonoverlapping doubly connected ring-domains in $G-E$ with a divergent sum of moduli $\mu_i(\mu_i=$ extremal distance of the two boundary components of a ring domain), a property which is invariant under the quasiconformal mapping of $G-E$. But a boundary component with this property must necessarily be a point. Therefore every point of E goes over into a point, and it is readily seen that $w_0(z)$ has a topological continuation $w(z)$ over E. It follows from the succeeding lemma that the maximal dilation of $w(z)$ on G is K_0.

Lemma 1. If Q is an analytic quadrilateral in G and E_0 a compact O_{AD} set in Q, then to every $\epsilon>0$ there exists a finite system of simply connected, nonoverlapping longitudinal³ strips $S_i, S_i \subset Q-E_0$ with modulus m_i, such that $\sum_i 1/m_i \geq 1/m - \epsilon$.

From that we get, because of $m'_i \leq K_0 m_i$,

$$\frac{1}{m'} \geq \sum_i \frac{1}{m'_i} \geq K_0^{-1} \sum_i \frac{1}{m_i} \geq K_0^{-1} \left(\frac{1}{m} - \epsilon \right)$$

and therefore

$$m' \leq K_0 m$$

for each analytic quadrilateral in G.

The lemma can be proved in the same way as Theorem 9 in Ahlfors and Beurling [2]. We map Q onto a rectangle R with sides a and b by means of its canonical conformal mapping. E_0 is transformed

² I.e. a set which allows no nonconstant and single-valued analytic function with a bounded Dirichlet-integral in its complement.

³ That is to say the boundary of S_i has an interval in common with each distinguished side of Q; S_i is therefore a quadrilateral with these intervals as distinguished sides.
into a set O_{AD} which we denote by E_0'. To any given $\epsilon > 0$ we can find a concentric rectangle R' with sides $a' > a$ and $b' < b$ and such that $b'/a' \geq b/a - \epsilon/2$. A curvilinear rectangle R'' which is contained in the rectangle with sides a', b' and contains the rectangle with sides a, b and the sides of which do not meet E_0 can be constructed; we choose its distinguished sides outside R and such that its modulus is $\leq a'/b'$. The set $E_0' \cap R''$ is a compact subset of the open rectangle R'', and by an exhaustion we can obviously find the strips S_i'' in R'' with $\sum_i 1/m_i'' \geq 1/m'' - \epsilon/2$. Each S_i'' contains a longitudinal strip S_i of the original rectangle R with modulus $m_i \leq m_i''$. Therefore we get

$$\sum_i \frac{1}{m_i} \geq \sum_i \frac{1}{m_i''} \geq \frac{1}{m''} - \epsilon/2 \geq b'/a' - \epsilon/2 \geq b/a - \epsilon = \frac{1}{m} - \epsilon.$$

3. For the composition of piecewise quasiconformal mappings however the stress lies on connected, not on discrete point sets. To get an answer in this direction, we consider a rectangle R in the z-plane ($0 \leq x \leq a$, $0 \leq y \leq b$) and a topological mapping $w(z)$ of R onto a rectangle R' in the w-plane ($0 \leq u \leq a'$, $0 \leq v \leq b'$) which preserves the four sides respectively. By E_y we denote the intersection of the line $\Re z = y$ with the given closed set E in R, and by $L_u(y)$ the linear measure of the vertical projection (i.e. onto the u-axis) of the w-image E_y' of E_y. The modulus of a horizontal rectangle is its length divided by its height; the modulus of its w-image has to be taken with respect to the sides which correspond to the vertical sides of the rectangle.

Lemma 2. If (1) the modulus m of every horizontal rectangle in R which has no interior point in common with E and the modulus m' of its image satisfy $m' \leq Km$, where K is some positive constant, and

(2) the linear measure $L_u(y)$ of the vertical projection of E_y' is zero for almost every y, we have

$$a'/b' \leq Ka/b.$$

Proof. For any $\epsilon > 0$ the set O_ϵ of all values y with $L_u(y) < \epsilon$ is open in $0 \leq y \leq b$ and has linear measure b. For any $y \in O_\epsilon$ we can find an interval $y_1 < y < y_2$ and a family of finitely many rectangles R_i with sides on $\Re z = y_1$ and $\Re z = y_2$ which contain every E_y for $y_1 < y < y_2$, and such that their w-images have a vertical projection of total linear measure less than ϵ. Let now B be a closed subset of O_ϵ of measure $> b - \epsilon$. We have an open covering of B by means of intervals β of the above kind, and by the Heine-Borel theorem there exists a finite covering, say β_1, \ldots, β_n. Starting with β_1 and the rectangles in the corresponding horizontal strip ($0 \leq x \leq a$, $y \in \beta_1$), we take in
every new interval β_i only that part which does not lie in one of the former intervals, and restrict the corresponding horizontal strip and its rectangles in the same way. We get a system of finitely many strips S_i of height b_i with total vertical measure $\sum_i b_i \geq b - \epsilon$. The rectangles T_{ij} in S_i, complementary to the rectangles R_{ij} in S_i, have no interior point in common with E and thus their moduli satisfy $m_{ij}' \leq K m_{ij}$. As the vertical projection of the images R_{ij}' of the R_{ij} has a total linear measure $< \epsilon$, there exist finitely many closed, disjoint intervals on the u-axis of total measure $< \epsilon$ covering this projection. We denote the complementary intervals on the u-axis by α_i', their length by a_i': we have $\sum_i a_i' > a' - \epsilon$. Each α_i' is spanned by the image T_{ij}' of at least one T_{ij}, and the modulus of this T_{ij}' is therefore $\geq a_{ij}'^2 / A_{ij}'$, A_{ij}' denoting the area of (the interior of) T_{ij}'. From that we get for each strip S_i

$$\frac{a_i}{b_i} \geq \frac{1}{K} \sum_j m_{ij} \geq \frac{1}{K} \sum_j m_{ij}' \geq \frac{1}{K} \sum_j \frac{a_{ij}'}{A_{ij}'}$$

$$\geq \frac{1}{K} \left(\sum_j a_{ij}' \right)^2 / \sum_j A_{ij}' \geq \frac{1}{K} \frac{(a' - \epsilon)^2}{A_i'}$$

with $A_i' =$ area of S_i'. Taking the reciprocals and summing up we get

$$\frac{b - \epsilon}{a} \leq \frac{\sum_i b_i}{a} \leq \frac{\sum_i A_i'}{(a' - \epsilon)^2} \leq K \frac{a'b'}{(a' - \epsilon)^2}$$

and therefore

$$b/a \leq K(b'/a')$$

which proves the lemma.

Let E be an arbitrary set of finite linear measure L in R. Then it is readily proved that the set of values y where E_y consists of at least N points has linear measure $\leq L/N$, and therefore the set of y where E_y consists of infinitely many points has measure zero. If E is of Σ-finite measure, i.e. the sum of denumerably many sets E^i of finite linear measure, the set of values y for which E_y consists of nonde- numerably many points has linear measure zero. But for any y where E_y is denumerable, the image set is denumerable and so is its projection, therefore $L_u(y) = 0$. As the property to be of Σ-finite linear measure is carried over by a conformal mapping of the closed quadrilateral, we get the

Theorem 2. If E is a closed subset of G of Σ-finite linear measure and $w(z)$ any topological mapping of G, its maximal dilation on G is equal
to its maximal dilation on $G - E$, that is to say E is deletable for the class of all topological mappings of G.

If $E = E_1 + E_2$ is the sum of a closed set E_1 of Σ-finite linear measure and a closed set E_2, every compact subset of which is a nullset O_{AD}, then it is clear from the construction that E is deletable. We can first delete $E_1 - E_2$, which is a closed set of $G - E_2$, and then E_2.

From Theorem 2 we get the following generalization of Theorem 13 in Ahlfors and Beurling [2]:

Corollary. A closed, discrete point set E of the complex plane, which is of Σ-finite linear measure, is a nullset O_{SB} if and only if it is a nullset O_{AD}.

For, if it is a nullset O_{SB} every schlicht conformal mapping of the complement of E is continuous on E and has therefore a conformal continuation, i.e. is a linear transformation. But this is known to be a sufficient condition for a closed discrete pointset to be an O_{AD} set. The converse is obvious.

4. If the mapping $w(z)$ is not only known to be topological in G but quasiconformal, that means has finite maximal dilation, and if outside E the maximal dilation is K_0, the point sets E which allow us to conclude $K_0 = K$ are much larger.

Lemma 3. Let $w(z)$ be a topological mapping of R onto R' as in Lemma 2. If the two following conditions are fulfilled:

1. For every horizontal rectangle in R and a certain positive number K we have $m' \leq K m$;
2. E is of two-dimensional measure zero; then the linear measure $L(y)$ of E'_y is zero for almost every y.

Proof. If this were not the case, we could find a closed subset B of $0 \leq y \leq b$ of positive linear measure h and a positive number l such that the linear measure of E_y would be zero while the linear measure of E'_y would be $L(y) \geq l$ for every $y \in B$. This is so because $L(y)$ is a measurable function of y and the linear measure of E_y is zero for almost all y.

If $y \in B$ is arbitrary, we can cover E_y by finitely many open (relatively to $0 \leq x \leq a$) intervals α_i of length a_i. The images have length a'_i. We then take an interval $y_1 < y < y_2$ and consider the rectangles $R_j(x \in \alpha, y_1 \leq y \leq y_2)$. We call them the rectangles corresponding to the intervals α_i in the horizontal strip $(0 \leq x \leq a, y_1 \leq y \leq y_2)$. Every R_j is mapped onto a quadrilateral R'_j and we denote by l_j the inf.

I.e. the complement allows no schlicht, bounded conformal mapping.
of the length of all curves joining the two distinguished sides in R_j', by F_j the area of the open R_j'. Because E_y is of measure zero and $\sum_i a_i \geq l$, it is clear that, given any $y \in B$, we can choose the α_j and afterwards $y_1 < y < y_2$ in such a way that

$$\sum_j a_j \leq \epsilon \quad \text{and} \quad \sum l_j \geq l - \epsilon.$$

The intervals $y_1 < y < y_2$ provide us with an open covering of B from which we get a finite covering. As in Lemma 2 the restriction to distinct strips S_i does not change the above two conditions, and we have for any strip S_i (with its intervals ϵ_{ij} of length a_{ij} and the corresponding rectangles R_{ij} with moduli m_{ij}) the following estimates:

$$\frac{a_{ij}}{b_i} = m_{ij} \geq \frac{1}{K} \frac{1}{m_{ij}} \geq \frac{1}{K} \frac{\epsilon_{ij}^2}{F_{ij}}.$$

Therefore

$$\frac{\epsilon}{b_i} \geq \sum_j a_{ij}/b_i \geq \frac{1}{K} \sum_j \frac{\epsilon_{ij}^2}{F_{ij}} \geq \frac{1}{K} \left(\sum_j \frac{\epsilon_{ij}}{j} \right)^2 / \sum_i F_{ij} \geq \frac{1}{K} \frac{(l - \epsilon)^2}{\sum_i F_{ij}}.$$

Taking reciprocals and summing up we get

$$\frac{h}{\epsilon} \leq \sum_i b_i/\epsilon \leq K \sum_i F_{ij}/(l - \epsilon)^2 \leq K \frac{a'b'}{(l - \epsilon)^2}.$$

As $\epsilon \to 0$ we conclude $h = 0$, q.e.d.

With exactly the same method but less rough estimates we can get the following result:

Lemma 3'. Let E be any closed set in R, B a closed subset of $0 \leq y \leq b$ of measure h and such that for $y \in B$ the linear measure of E_y is $\leq l$ while the linear measure of E'_y is $L(y) \geq l'$. Let F denote the area of the closed set $\bigcup_{y \in B} E'_y$. Then we have

$$l/h \geq K^{-1}(l'/F).$$

For $l = 0$, $l' > 0$ we get $h = 0$, i.e. the above theorem. For $l' = \infty$ (we have to replace $l' - \epsilon$ by a number $< l'$ in the proof) and $l = a$ we get $h = 0$.

Corollary. The set of values y for which the image curve of the segment $\exists z = y$ is not rectifiable is of measure zero.
Theorem 3. If E is a closed subset of G of two-dimensional measure zero and $w(z)$ any quasiconformal mapping of G, its maximal dilation on $G - E$ is equal to its maximal dilation on G. In other words, a closed set of zero area is deletable with respect to all quasiconformal mappings of G.

Proof. We consider any analytic quadrilateral $Q \subset G$ and map it as well as its image Q' conformally onto the rectangles R and R' respectively. As the set E_1 in R which corresponds to the part $E \cap Q$ of the exceptional set E in G is closed and of zero area, the conditions of Lemma 3 are fulfilled. From Lemma 3 we conclude that the conditions of Lemma 2 with the constant K_0 are fulfilled. From Lemma 2 we get therefore

$$a'/b' \leq K_0(a/b)$$

q.e.d.

5. Another application of the same method leads to the following Lemma 3’’: A topological mapping of R onto R' with the property (1) of Lemma 3 is absolutely continuous on almost every horizontal line.

The set of all y for which the length $L_y(\xi)$ of the image of the stretch $(0 = x = \xi, y = \eta)$ is not absolutely continuous in ξ is measurable. If it were not of measure zero, there would exist a closed set B on the interval $0 \leq y \leq b$ of positive linear measure δ and a number l such that for every y in B the corresponding horizontal stretch carries a system of intervals of total length $< \varepsilon$ while their images have total length $\geq l$. The rest of the proof is a repetition of the one given for Lemma 3. Lemma 3’’ proves the theorem on absolute continuity of quasiconformal mappings which was announced in the Bull. Amer. Math. Soc. Abstract 61-3-421, by the same author.

References

Institute for Advanced Study